

Uncovering the Formation of Triadic Closure in Social Networks

Zhanpeng Fang and Jie Tang Department of Computer Science, Tsinghua University

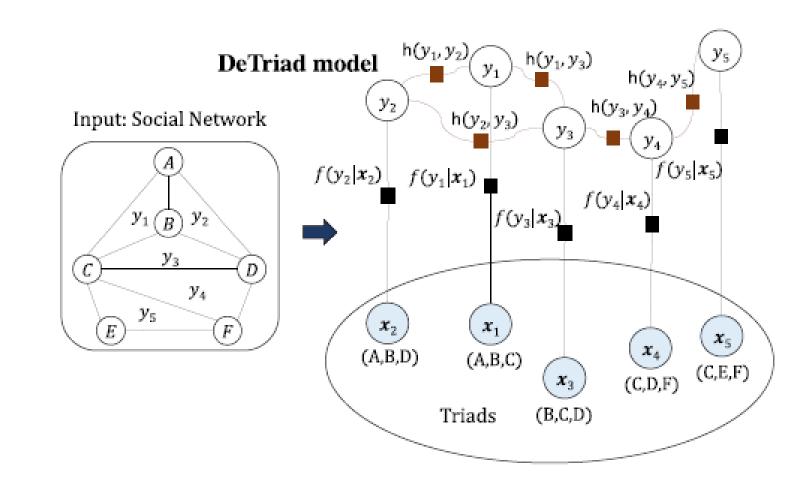
- Group formation is a central research issue in social science. A triad is a group of three people, one of the most basic human groups in social networks.
- Understanding the formation of triads can help reveal the complex and subtle mechanism that governs dynamics of all social networks.
- Decoding triadic closure: for a given closed triad, predict which link was firstly created, which followed and finally which one was the last to close the triad.

• **DeTriad**: a semi-supervised probabilistic factor graph model which naturally models the correlation between triads, outperforms several alternative methods by 20% in terms of accuracy.

Problem Definition

Let G = (V, E) denote a social network. Associate a time stamp t_{ij} to each edge.

Definition 1 Closed Triad: For three users $\Delta = (A, B, C)$, if there is a link between any two users, i.e., e_{AB} , e_{BC} , $e_{AC} \in E$, then we say that \triangle is a closed triad.


Problem 1 *Decoding Triadic Closure:*

Given a social network G = (V, E), associate a hidden variable y_i to each closed triad Δ_i to represent the order of time stamps associated with the three links in Δ_i .

Goal: use available labeled information to train a function f, so that, for an unlabeled Δ , we can predict its order y, i.e.,

$$f:(\{\Delta\}^U|G,Y^L)\to Y^U$$

DeTriad Model

$$P(Y|\mathbf{X},G) = \prod_{\Delta_i} f(y_i|\mathbf{x}_i) \prod_{i \sim j} h(y_i, y_j)$$

• Local factor: $f(y_i|x_i)$ represents posterior probability of the decoding result given all features defined for triad Δ_i ;

$$f(y_i|\boldsymbol{x}_i) = \frac{1}{Z_1} \exp\{\sum_{k=1}^d \alpha_k f_k(x_{ik}, y_i)\}$$

• Correlation factor: $h(y_i, y_j)$ represents the correlation between decoding results of Δ_i and Δ_j .

$$h(y_i, y_j) = \frac{1}{Z_2} \exp\{\sum_k \mu_k h_k(y_i, y_j)\}$$

Synchronous method for correlation factor

$$h(y_i, y_j) = \frac{1}{Z_3} \exp\{\sum_k \mu_k \cdot I_k(y_i, y_j)\},$$

Asynchronous method for correlation factor

$$h(y_i, y_j) = \frac{1}{Z_4} \exp\{\sum_{k_i, k_j} \mu_{k_i, k_j} \cdot I_{k_i, k_j} (y_i, y_j)\},\,$$

$$\mathcal{O}(\boldsymbol{\theta}) = \log P(Y^L | \boldsymbol{X}, G) = \log \sum_{Y|Y^L} P(Y | \boldsymbol{X}, G)$$

$$= \log \sum_{Y|Y^L} \{ \sum_{\Delta_i} \sum_{k=1}^d \alpha_k f_k(x_{ik}, y_i) + \sum_{i \sim j} \sum_k \mu_k h_k(y_i, y_j) \}$$

$$- \log \sum_{Y} \{ \sum_{\Delta_i} \sum_{k=1}^d \alpha_k f_k(x_{ik}, y_i) + \sum_{i \sim j} \sum_k \mu_k h_k(y_i, y_j) \}$$

$$\frac{\partial \mathcal{O}(\boldsymbol{\theta})}{\partial \mu_k} = \mathbf{E}_{P_{\mu_k}(y_i, y_j | Y^L, \mathbf{X}, G)}[h_k(y_i, y_j)]$$
$$- \mathbf{E}_{P_{\mu_k}(y_i, y_j | \mathbf{X}, G)}[h_k(y_i, y_j)]$$

Input: network G, features X, learning rate η **Output**: estimated parameters θ

Initialize $\theta \leftarrow 0$;

repeat

Perform LBP to calculate $P(y_i|Y^L, X, G)$, $P(y_i, y_i|Y^L, \boldsymbol{X}, G);$

Perform LBP to calculate $P(y_i|X,G)$, $P(y_i, y_j | \boldsymbol{X}, G);$

Calculate the gradient ∇_{μ_k} of μ_k according to Eq. 8 (for α_k with a similar formula):

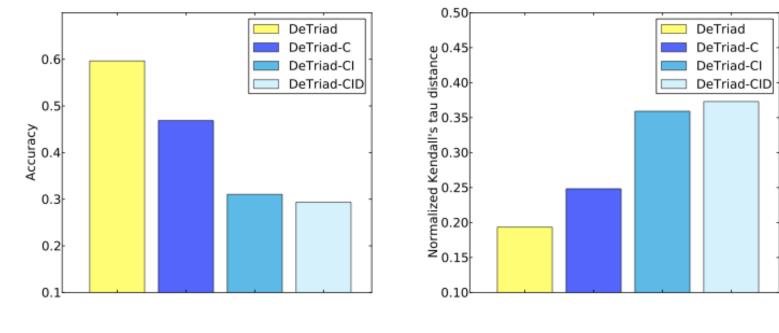
$$\nabla_{\mu_k} = \mathbf{E}_{P_{\mu_k}(y_i, y_j | Y^L, \mathbf{X}, G)} [h_k(y_i, y_j)] - \mathbf{E}_{P_{\mu_k}(y_i, y_j | \mathbf{X}, G)} [h_k(y_i, y_j)]$$

Update parameter θ with the learning rate η :

$$\boldsymbol{\theta}_{\mathrm{new}} = \boldsymbol{\theta}_{\mathrm{old}} + \boldsymbol{\eta} \cdot \boldsymbol{\nabla}_{\boldsymbol{\theta}}$$

until Convergence;

Algorithm 1: Learning algorithm for the DeTriad model.

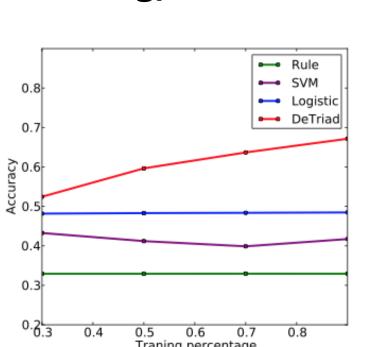

Experimental Results

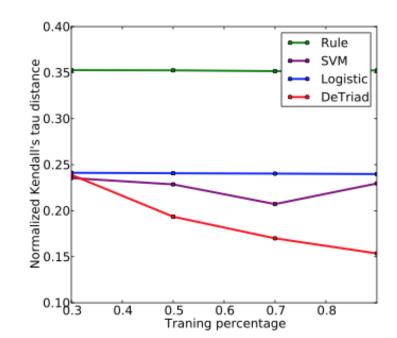
Dataset: coauthor network from 1995 to 2014 in Arnetminer includes 1,910,979 publications, 1,145,632 authors, 4,322,998 coauthor relationships, and 5,913,455 closed triads.

4 Categories of features: C(Correlation), D(Demography), I(Interaction), S(Social effect)

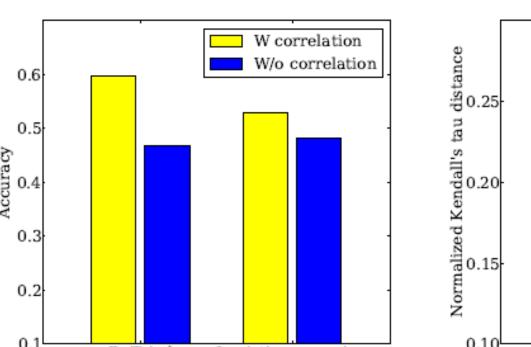
Algorithm	Spearman	Kendall	Accuracy
Rule	0.4604	0.3525	0.3293
SVM	0.3205	0.2286	0.4121
Logistic	0.3379	0.2407	0.4830
DeTriad-A	0.3060	0.2190	0.5550
DeTriad	0.2716	0.1935	0.5964

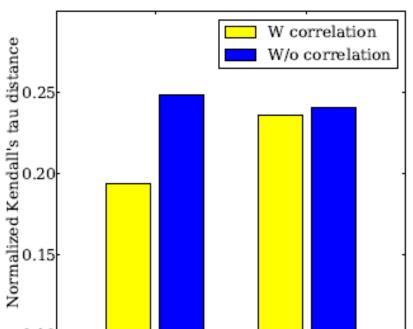
Factor Contribution:




Each category of features contributes improvement to the performance.

Effect of Correlation Factors:


The improvement of DeTriad by adding correlation factors is significantly higher than that of logistic regression by adding correlation features.


Training/Test Ration:

Improvements can be obtained by DeTriad when increasing the size of training data.

