Multi-Modal Bayesian Embeddings for Learning Social Knowledge Graphs

Zhilin Yang¹², Jie Tang¹, William W. Cohen²

¹Tsinghua University

²Carnegie Mellon University

AMiner: academic social network

Text-Based Approach

H-Index: 133 | #Paper: 818 | #Citation: 111164 Department of Computer Science, University of Illinois at Urbana-

List of publications

Research interests

Text-Based Approach

818

A Framework of Mining Trajectories from Untrustworthy Data in Cyber-P

Term Frequency => "challenging problem"

TF-IDF => "line drawing"

List of publications

Knowledge bases

Knowledge-Driven Approach

Research interests

Problem:

Learning Social Knowledge Graphs

Problem:

Learning Social Knowledge Graphs

Social network structure

Problem:

Learning Social Knowledge Graphs

Kevin: Deep Learning, Natural Language Processing

Jing: Recurrent Networks, Named Entity Recognition

Challenges

Two modalities – users and concepts

How to leverage information from both modalities?

How to connect these two modalities?

Approach

Concept Embedding

Gaussian distribution for user embeddings

Concept Embedding

Gaussian distribution for concept embeddings

Collapsed Gibbs sampling

Iterate between:

1. Sample latent variables

Collapsed Gibbs sampling

Iterate between:

- 1. Sample latent variables
- 2. Update parameters

Collapsed Gibbs sampling

Iterate between:

- 1. Sample latent variables
- 2. Update parameters
- 3. Update embeddings

AMiner Research Interest Dataset

- ➤ 644,985 researchers
- Terms in these researchers' publications
 - Filtered with Wikipedia
- Evaluation
 - Homepage matching
 - 1,874 researchers
 - Using homepages as ground truth
 - LinkedIn matching
 - 113 researchers
 - Using LinkedIn skills as ground truth

Code and data available:

https://github.com/kimiyoung/genvector

Homepage Matching

Using homepages as ground truth.

Method	Precision@5
GenVector	78.1003%
GenVector-E	77.8548%
Sys-Base	73.8189%
Author-Topic	74.4397%
NTN	65.8911%
CountKG	54.4823%

GenVector
GenVector-E
Sys-Base

Our model
Our model w/o embedding update
AMiner baseline: key term extraction

CountKG Author-topic NTN Rank by frequency Classic topic models Neural tensor networks

LinkedIn Matching

Using LinkedIn skills as ground truth.

Method	Precision@5
GenVector	50.4424%
GenVector-E	49.9145%
Author-Topic	47.6106%
NTN	42.0512%
CountKG	46.8376%

GenVector
GenVector-E

Our model Our model w/o embedding update

CountKG Author-topic NTN Rank by frequency Classic topic models Neural tensor networks

Error Rate of Irrelevant Cases

Manually label terms that are clearly NOT research interests, e.g., challenging problem.

Method	Error rate	
GenVector		1.2%
Sys-Base		18.8%
Author-Topic		1.6%
NTN		7.2%

Qualitative Study: Top Concepts within Topics

GenVector

Query expansion Concept mining Language modeling Information extraction Knowledge extraction **Entity linking** Language models Named entity recognition Document clustering Latent semantic indexing

Author-Topic

Speech recognition Natural language

*Integrated circuits

Document retrieval

Language models

Language model

*Microphone array

Computational linguistics

*Semidefinite programming

Active learning

Qualitative Study: Top Concepts within Topics

GenVector

Image processing

Face recognition

Feature extraction

Computer vision

Image segmentation

Image analysis

Feature detection

Digital image processing

Machine learning algorithms

Machine vision

Author-Topic

Face recognition

*Food intake

Face detection

Image recognition

*Atmospheric chemistry

Feature extraction

Statistical learning

Discriminant analysis

Object tracking

*Human factors

Qualitative Study: Research Interests

GenVector

Feature extraction
Image segmentation
Image matching
Image classification
Face recognition

Sys-Base

Face recognition

Face image

*Novel approach

*Line drawing

Discriminant analysis

Qualitative Study: Research Interests

GenVector

Unsupervised learning
Feature learning
Bayesian networks
Reinforcement learning
Dimensionality reduction

Sys-Base

*Challenging problem

Reinforcement learning

*Autonomous helicopter

*Autonomous helicopter flight

Near-optimal planning

Online Test

A/B test with live users

Mixing the results with Sys-Base

Method	Error rate	
GenVector		3.33%
Sys-Base	10	0.00%

Other Social Networks?

Social network structure

Conclusion

- ➤ Study a novel problem
 - Learning social knowledge graphs
- Propose a model
 - Multi-modal Bayesian embedding
 - Integrate embeddings into graphical models
- >AMiner research interest dataset
 - 644,985 researchers
 - Homepage and LinkedIn matching as ground truth
- > Online deployment on AMiner

Thanks!

Code and data:

https://github.com/kimiyoung/genvector

Social Networks

AMiner, Facebook, Twitter...

Huge amounts of information

Knowledge Bases

Wikipedia, Freebase, Yago, NELL...

Huge amounts of knowledge

Bridge the Gap

Better user understanding e.g. mine research interests on AMiner

Copy picture **Approach** Knowledge base Social network Social text Concept User embeddings embeddings Model Social KG

Documents (one per user)

Parameters for topics

Generate a topic distribution for each document (from a Dirichlet)

Generate Gaussian distribution for each embedding space (from a Normal Gamma)

Generate the topic for each concept (from a Multinomial)

Generate the topic for each user (from a Uniform)

Generate embeddings for users and concepts (from a Gaussian)

General

Collapsed Gibbs sampling for inference

Add picture

Update the embedding during learning

Different from LDAs with discrete observed variables

Methods for Comparison

Method	Description
GenVector	Our model
GenVector-E	Our model w/o embedding update
Sys-Base	AMiner baseline: key term extraction
CountKG	Rank by frequency
Author-topic	Classic topic models
NTN	Neural tensor networks