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ABSTRACT
AMiner1 is a free online academic search and mining system, hav-
ing collected more than 130,000,000 researcher pro�les and over
200,000,000 papers from multiple publication databases [25].

In this paper, we present the implementation and deployment
of name disambiguation, a core component in AMiner. The prob-
lem has been studied for decades but remains largely unsolved.
In AMiner, we did a systemic investigation into the problem and
propose a comprehensive framework to address the problem. We
propose a novel representation learning method by incorporating
both global and local information and present an end-to-end cluster
size estimation method that is signi�cantly better than traditional
BIC-based method. To improve accuracy, we involve human anno-
tators into the disambiguation process. We carefully evaluate the
proposed framework on real-world large data and experimental
results show that the proposed solution achieves clearly better per-
formance (+7-35% in terms of F1-score) than several state-of-the-art
methods including GHOST [5], Zhang et al. [33], and Louppe et
al. [17].

Finally, the algorithm has been deployed in AMiner to deal with
the disambiguation problem at the billion scale, which further
demonstrates both e�ectiveness and e�ciency of the proposed
framework.
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resolution; Clustering;
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1 INTRODUCTION
There are 151,671 di�erent last names and 5,163 di�erent �rst names
in common use in the United States 2. This means that if you happen
to have a common �rst and last names, according to the birthday
paradox theory [27], the probability that some other researcher in
your university shares the same name with you is close to 100%! In
practice, it is estimated that the 300 most common male names are
used by more than 115 million people (taking about 78.74 percent)
in the United States. This poses a big challenge to many person-
centric applications such as scienti�c literature management and
people search engine.

The problem of disambiguating who is who is referred to as name
disambiguation, also named as entity resolution [3, 4], web appear-
ance disambiguation [1, 11], name identi�cation [16], and object
distinction [31] from a broader viewpoint, and has been extensively
studied for decades by di�erent communities. It has many real
applications, for example, matching records between enterprise
databases with di�erent schema [4], aligning protein-protein inter-
action networks to transfer biological knowledge across di�erent
species [30], constructing canonicalized knowledge base based on
facts extracted from texts [6], and identifying users across multiple
online social networks [34]. However, despite much work that has
been done, the problem remains largely unsolved. Most of the afore-
mentioned methods are more or less ad-hoc and the performance
becomes unpredictable when scale up to handle real large data.

In this paper, employing AMiner as the basis for our experi-
mental data, we explain how we deal with the name ambiguity
problem with large data in an online fashion. AMiner is a free on-
line academic search and mining system [25]. The system extracts
researchers’ pro�les automatically from theWeb [24] and integrates
them with published papers after name disambiguation [23]. To
date, it has collected more than 130,000,000 researcher pro�les and
over 200,000,000 papers from multiple publication databases, with a
growth rate of over 500,000 per month. AMiner can be viewed as an
author-centric search system, where one can �nd domain experts,

2http://howmanyofme.com
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Figure 1: An overview of the author disambiguation frame-
work in AMiner.

rising stars, collaborators, reviewers, potential readers, and so on.
Clearly, name disambiguation is a cornerstone of the system.

Dealing with the name ambiguity problem in a large online
system poses several unique challenges:

(1) How to quantify the similarity between entities from
di�erent data sources? As documents and authors are
from di�erent sources and may have no overlapping infor-
mation, it is necessary to design a principled way to quantify
the similarity between (di�erent) entities.

(2) How todetermine thenumber of personswith the same
name? There is no answer for question like how many peo-
ple having the same name with you. However, this is usually
a pre-speci�ed parameter for existing name disambiguation
algorithms (using clustering).

(3) How to integrate data continuously? To ensure user ex-
perience, we need to minimize the delay between the arrival
of a document and the time it displays in its authors’ pro�les
and maintain the consistency after each update.

(4) How to involve human e�orts in the loop?A completely
automatic disambiguation system without any human in-
teractions is far from su�cient. It is necessary to involve
human e�orts in the loop to achieve high disambiguation
accuracy.

To this end, in AMiner, we design a uni�ed framework to address
the above challenges. For quantifying the similarity, we propose a
global metric and local linkage learning algorithm, which projects
each entity into a low-dimensional latent common space. This o�ers
a way to directly compute the similarity of entities from di�erent
sources. For determining the number of persons who share the same
name, we propose an end-to-end model that directly estimates the
number of persons (clusters) in a dataset using a recurrent neural
network. For involving human into disambiguation, we formally
de�ne six potential feedbacks from users/annotators. The feedbacks
are then incorporated into di�erent components of the framework
to improve the disambiguation accuracy.

We evaluate the proposed framework on real-world large data.
Our experiments show that the proposed solution achieves signif-
icantly better performance than several state-of-the-art methods
including GHOST [33], Zhang et al. [33], and Louppe et al. [17]
(+7-35% in terms of F1-score). The automatically estimated number
of persons by our proposed model is close to the actual number.

The framework has been deployed in AMiner to deal with the
disambiguation problem at the billion scale.

2 RELATEDWORK
Name disambiguation is usually viewed as a clustering problem [1,
9, 10, 12, 22, 32]. As many other clustering tasks, there are two main
challenges that need to be addressed how to quantify the similarity
and how to determine cluster size. Most existing literature mainly
focuses on addressing the �rst sub-problem,while ignore the second.
The state-of-the-art solutions for name disambiguation problem can
be divided into two categories: feature-based and linkage-based.
Feature-based methods. Feature-based methods [8, 10, 22, 32]
leverage supervised learning method to learn a pairwise distance
function between documents based on their feature vectors. Huang
et al. [10] �rst use blocking [22] technique to group candidate docu-
ments with similar names together. Then it learns distance between
documents by an e�cient Support Vector Machines (SVM) and
�nally employs DBSCAN to cluster documents. Yoshida et al. [32]
propose a two-stage clustering method to learn better feature rep-
resentation via the �rst clustering step. Han et al. [8] present su-
pervised disambiguation methods based on SVM and Naïve Bayes.
Moreover, Louppe et al. [17] use a classi�er to learn pairwise similar-
ity and perform semi-supervised hierarchical clustering to generate
results.
Linkage-based methods. There are also several linkage/graph-
based methods [1, 9, 12] to deal with name disambiguation. These
methods are capable of utilizing graph topology and aggregate infor-
mation from neighbors. GHOST [5] builds document graph for each
ambiguous name by co-authorship only. It uses carefully-designed
similarity function and uses a�nity propagation algorithm to gen-
erate clustering results. Tang et al. [23] employ Hidden Markov
Random Fields to model node features and edge features in a uni�ed
probabilistic framework. Zhang et al. [33] solve this problem by
learning graph embedding from three constructed graphs based on
document similarity and coauthor relationship.

Our method proposed in this paper combines the advantages
of above two methods by learning a global embedding using su-
pervised metric learning and re�ning the embedding using local
linkage structures.
Cluster size estimation. The second challenge is how to deter-
mine the number K of clusters (name identities). Most previous
literature assumes the number is known beforehand and ignores
this problem in the solution. Several existing works claim to use
clustering methods such as DBSCAN to avoid specifying K ; how-
ever several density-based hyperparameters are still needed to be
pre-speci�ed. Tang et al. [23] use a variation of X-means [19] algo-
rithm to iteratively estimates the optimalK bymeasuring clustering
quality based on Bayesian Information Criterion (BIC). However,
in our empirical study on large data, we found that the BIC-based
methods are inclined to merge clusters together, thus result in low
accuracy. In this paper, we seek to learn an end-to-end model that
takes a set of document embeddings as input and directly predict
the number of clusters.

There is also a thread of research [21, 29] solving this problem in
a hierarchical tree model instead of making pairwise comparisons



using clustering. For example, Wick et al. [29] build a discriminative
hierarchical factor graphmodel for coreference, and the hierarchical
model can also address the scalability issue. Furthermore, human
edits can be incorporated [28] by running MCMC inference on the
hierarchical model.

3 PRELIMINARIES
In this section, we present the formulation of the problem with
preliminaries.

3.1 Problem Formulation
Let a be a given name reference, and Da = {Da

1 ,D
a
2 , ...,D

a
N } be a

set of N documents associated with the author name a. We callDa

as the candidate set of a. Each document Da
i ∈ D

a is represented
by a set of features Da

i = {x1,x2, ...} including title, abstracts, co-
author names, venue names, etc.We use I(Da

i ) to denote the identity
(corresponding real-world person) of Da

i . Thus if D
a
i and Da

j are
authored by the same author, we have I(Da

i ) = I(D
a
j ). Given this,

we de�ne the problem of author disambiguation as follows.

De�nition 3.1. Name Disambiguation. The task of author dis-
ambiguation is to �nd a function Φ to partition Da into a set of
disjoint clusters, i.e.,

Φ(Da ) → Ca ,where Ca = {Ca
1 ,C

a
2 , ...,C

a
K },

such that each cluster only contains documents of the same identity—
i.e., I(Da

i ) = I(D
a
j ),∀(Da

i ,D
a
j ) ∈ C

a
k ×C

a
k , and di�erent clusters con-

tains documents of di�erent identities—i.e., I(Da
i ) , I(D

a
j ),∀(Da

i ,D
a
j ) ∈

Ca
k ×C

a
k ′ ,k , k

′.

We call Ca a disambiguation (clustering) solution of Da for
name a. We omit the superscript a in the following description if
there is no ambiguity. In general, the problem is very di�cult, if
there is not any supervision information. Human annotators (or
users) can provide useful constraints. Wemainly consider two kinds
of constraints: identity constraints S I and pairwise constraints SP ,
with S = S I ∪ SP . The identity constraint (Di ,Ck ,yik ∈ {0, 1})
indicates that Di should belong to (or not belong to) the cluster Ck{

(Di ,Ck , 0) ∈ S I → Di < Ck ,

(Di ,Ck , 1) ∈ S I → Di ∈ Ck .

The pairwise constraint (Di ,D j ,yi j ∈ {0, 1}) indicates that the two
documents Di and D j should (or not) belong to the same author.{

(Di ,D j , 0) ∈ SP → I(Di ) , I(D j ),
(Di ,D j , 1) ∈ SP → I(Di ) = I(D j ).

Please note that identity constraints imply pairwise constraints
since


(Di ,Ck , 1) ∈ S I ∧ (D j ,Ck , 1) ∈ S I → (Di ,D j , 1) ∈ SP ,
(Di ,Ck , 1) ∈ S I ∧ (D j ,Ck ′ , 1) ∈ S I ∧Ck , Ck ′ → (Di ,D j , 0) ∈ SP ,
(Di ,Ck , 1) ∈ S I ∧ (D j ,Ck , 0) ∈ S I → (Di ,D j , 0) ∈ SP .

(1)

For simplicity, we assume there is no logical con�ict in S .
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Figure 2: The architecture of global metric learning with
triplet loss. Each training example is a triplet consisting of
an anchor Di , a positive sample Di+ and a negative sample
Di−. The objective is to distinguish positive pairs (Di ,Di+)
from negative pairs (Di ,Di+).

3.2 AMiner
AMiner is a free online academic search and mining system and
also the second generation of ArnetMiner [25], with the emphasis
to o�er approaches to gain a deeper understanding of the large
and heterogeneous information networks (authors, papers, venues,
topics, etc.) formed in the scienti�c literature data. The system has
been in operation since 2006 and has attracted more than 8,000,000
independent IP accesses from over 220 countries/regions. It has
become strategic partner of Microsoft Academic Search and the
o�cial content provider of Sogou3 Scholar.

AMiner automatically extracts researchers’ pro�les from the
Web and integrates the publication data from online databases such
as DBLP, ACM Digital Library, CiteSeer, and SCI. In the integration,
we inevitably have to face the challenge of name ambiguity. The
problem is becoming more and more challenging as the volume of
publication data is growing at a rapid rate, with more than 500,000
new documents needed to be integrated into the system per month.
In this paper, we systematically discuss how to solve this problem
at the billion scale and in an incremental fashion.

4 FRAMEWORK
In this section, we discuss the design and implementation of our
deployed solution to author disambiguation problem in detail. We
�rst propose our representation learningmethod and introduce how
to estimate cluster size in the disambiguation process. To deploy
the algorithm in a large scale online system, we need to minimize
the delay of the integration and maintain the consistency after
each update. We discuss our solution for continuous integration
in Section 4.3 and present how to leverage human annotations in
Section 4.4.

4.1 Representation Learning
In order to e�ectively quantify the similarity between di�erent
documents, we �rst transform documents into an embedding space
such that Di is close to D j if I(Di ) = I(D j ). There are two ways to
embed the data. We can either learn a global embedding function

3http://sogou.com, the second largest search engine in China.



that encodes all the documents in a uni�ed space or learn a local
embedding function for each candidate set separately. In our frame-
work, we �rst learn a supervised global embedding function, then
re�ne the global embeddings for each candidate set based on the
local contexts. We �rst present the implementation of our method
and then discuss the intuition of our design in Section 4.5.

4.1.1 Global Metric Learning. Input documentDi is represented
as a varied-length set of features Di = {x1,x2, ...}, where features
are words in title and abstract, coauthor names, venue names,
a�liations, etc. Each feature is a one-hot vector. We �rst trans-
form the feature set into a continuous low-dimensional space. In-
spired by the unsupervised representation learning techniques,
we use Word2Vec [18] to obtain an embedding x̄n ∈ Rd for each
feature xn . We de�ne the feature embedding of document Di as
xi =

∑
xn ∈Di αnx̄n , which is a weighted sum of the embedding of

each feature in Di . In the equation, αn is the inverted document
frequency of feature xn and xi captures the correlations between
features based on the co-occurrence statistics within each individual
documents [18]. However, the ability of xi to distinguish documents
with di�erent authors is limited. Thus, we seek to leverage labeled
data to �ne-tune the embedding.

Contrastive Loss. Given a set of constraints SP = {(Di ,D j ,y)}
where y = 1 if I(Di ) = I(D j ) (i.e. positive pairs) and I(Di ) , I(D j ) if
y = 0 (i.e. negative pairs). The idea of metric learning is to enforce
positive pairs to be close in the embedding space and negative
pairs to be far away. To this end, we introduce another embedding
function f : xi ∈ Rd → Rdf , and yi = f (xi ) as a new embedding
of Di . A straightforward idea is to optimize the contrastive loss
Lf =

∑
(Di ,D j ,y)∈SP Lf (Di ,D j ,y) where

Lf (Di ,D j ,y) =
{
δ (yi , yj ), y = 1
max{0,m − δ (yi , yj )}, y = 0

where δ (v1,v2) = | |v1−v2 | |2 is the euclidean distance in the embed-
ding space,m > 0 is a margin. Lf encourages all documents of the
same author to be projected onto a single point in the embedding
space which can be potentially troublesome since a single author
might work on di�erent topics and collaborate with di�erent com-
munities. Thus, we adopt Learning to Rank and optimize a triplet
loss function.
Triplet Loss. Let (Di ,Di+,Di−) be a triplet where I(Di ) = I(Di+)
and I(Di ) , I(Di−), we have

δ (yi , yi+) +m < δ (yi , yi−),
∀(Di ,Di+,Di−) ∈ T,

(2)

where T is the set of all possible triplets in the training set,m is
a margin enforced between positive pairs and negative pairs. The
objective Lf is then replaced as

Lf =
∑

(Di ,Di+,Di−)∈T
max{0,δ (yi , yi+) − δ (yi , yi−) +m}. (3)

Instead of projecting to a single point, triplet loss enables doc-
uments with the same identity to reside on a manifold [20], and
at the same time maintain a distance from other documents. The
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Figure 3: The architecture of local linkage learning with
graph auto-encoder. G is a local linkage graph, Y is a fea-
ture matrix, A is an adjacency matrix, Z is a learned latent
local embedding matrix, Ã is a reconstructed adjacency ma-
trix. The objective is to minimize the reconstruction error
between A and Ã.

architecture of global metric learning with triplet loss is shown in
Figure 2.

We call {yi } global embeddings because documents in di�erent
candidate sets are embedded in a uni�ed space. However, since the
clustering is conducted separately for each name reference, local
contexts within a candidate set can be leveraged to further improve
the performance.

4.1.2 Local Linkage Learning. We seek to re�ne the global em-
beddings by leveraging �ne-grained information within a candidate
set. Since most candidate sets do not have any labeled data, an un-
supervised method is preferred in this step. Following the idea of
linkage based disambiguation methods proposed in [1, 9, 12, 33],
we construct a graph for each candidate set.

De�nition 4.1. Local Linkage Graph. For a given name refer-
ence a, we construct a local linkage graph Ga = (Da , Ea ), where
Da = {Da

i } is the set of documents authored by a person named a,
Ea = {(Da

i ,D
a
j )} is a set of edges capturing the similarity between

the documents.

We measure the similarity of two documents based on the com-
mon features shared by the two documents. Let the common fea-
ture set of Di and D j be the intersection between their feature sets
Di ∩ D j , we de�ne the linkage weightW (Di ,D j ) =

∑
x ∈Di∩D j wx

between Di and D j as a weighted sum of all the common features,
where wx is the weight of feature x . The weights {wx } can be
learned by a supervised model, but for simplicity, we de�ne feature
weight as its inverted document frequency. We construct an edge
in G between Di and D j ifW (Di ,D j ) is above a threshold4.

The intuition for constructing G is that Di and D j are likely to
have the same identity if they share a lot of unique features (i.e.
W (Di ,D j ) is large). Thus, we try to leverage the structure of G
to improve the global embedding.We use an unsupervised auto-
encoder architecture [14, 26] to learn from the local linkage graph.
Graph Auto-encoder. Let Y = [yᵀ1 , ..., y

ᵀ
N ]
ᵀ denotes an embed-

ding matrix of D generated by f , A ∈ RN×N is the adjacency
matrix of G. A graph auto-encoder is comprised of a node encoder
model Z = д1(Y,A) and an edge decoder model Ã = д2(Z), where
Z = [zᵀ1 , ..., z

ᵀ
N ]
ᵀ is a node embedding matrix, Ã is a predicted

4We empirically set the threshold as 10.



adjacency matrix. The objective is to minimize the reconstruction
error between the predicted Ã and the original adjacency matrix A.

We instantiate д1 as a two-layer graph convolution network
(GCN) [13] due to its e�ectiveness for modeling networked data:

д1(Y,A) = ÛAReLU( ÛAYW0)W1, (4)

where ÛA is symmetrically normalized adjacency matrix (i.e. ÛA =
D

1
2AD−

1
2 , D is the degree matrix of G), ReLU(·) = max(0, ·), W0

andW1 are the parameters of the �rst and second layer respectively.
The decoder д2 is de�ned as

д2(Z) = sigmoid(ZᵀZ) (5)

Thus, the probability of predicting the existence of an edge be-
tween Di and D j is given by

p(Ãi j = 1|zi , zj ) = sigmoid(zᵀi zj ) (6)

The objective is then de�ned as minimizing the cross entropy:

Lд = −
∑

Di ,D j ∈D
Ai j logp(Ãi j ) (7)

We take the latent variables Z = [zᵀ1 , ..., z
ᵀ
N]
ᵀ as new document

embeddings. Z incorporates information from both global and local
context. In our implementation, we use a variational version of
graph auto-encoder [14] by assuming Z is generated from a latent
Gaussian distribution, hence, Equation (7) is extended as the sum
of a reconstruction loss and the KL divergence between the learned
latent distribution and the prior distribution. Our empirical results
show that variational graph auto-encoder outperforms the original
one. The binary adjacency matrix A in the encoder model can be
replaced with the weight matrix calculated byW (Di ,D j ). However,
in our experiments, we found that it leads to slower convergence
and does not signi�cantly improve the performance.

The local linkage learning model is unsupervised since we con-
struct the local linkage graph G purely based on the overlap of
features between documents. We can re�ne G based on the pair-
wise constraints SP to support semi-supervised learning (Cf. § 4.4).

4.2 Cluster Size Estimation
Based on the learned embeddings, the �nal partition of a candidate
set is determined by a clustering algorithm. We use hierarchical
agglomerative clustering algorithm (HAC) as our main cluster-
ing method. One common issue for clustering problems is how to
estimate the number of clusters K . There are existing clustering
methods such as DBSCAN that do not take an explicit K as input,
but it requires preset hyperparameters to determine density which
changes signi�cantly in di�erent candidate sets. The most popular
way to determine the number of clusters is X-means [19], which
iteratively splitting the centroids and searching for an optimal K
based on the quality of the proposed clustering. There are mainly
two drawbacks of X-means algorithm for our task. First, the clus-
tering quality is scored based on a prede�ned measurement such
as Bayesian Information Criterion which cannot handle a complex

mixture of data (hence tend to over merge the data when the num-
ber of clusters is large) in high dimension [7]. Second, it involves
an iterative trial of potential splits which is not e�cient enough
on large datasets. To overcome the above issues, we seek to learn
an end-to-end model h(D) → R that takes a set of documents as
input and directly estimates the number of di�erent identities in
the candidate set.

Recent progress in deep learning community shows the capacity
of recurrent neural networks in modeling discrete sequences and
sets of data. Bello et al. [2] shows that RNN is able to act as an
encoder in the solution of combinatorial optimization problems
such as TSP. Inspired by these works, we adopt RNN as an encoder
and try to map a set of embedding vectors to the true number of
clusters in the set. To achieve this goal, there are two challenges.
First, the size of a candidate set varies in a wide range from one to
tens of thousands. Although RNN is able to handle variable sized
input via padding and truncation, those operations may introduce
unwanted bias. Second, it is hard to construct a training set for
this problem. It is infeasible to manually label a large number of
candidate sets with true cluster size. To resolve these issues, we
propose a sampling strategy to construct a pseudo-training set.

Let C = {C1,C2, ...} be a set of clean clusters (as discussed in
Section 4.4) where each cluster only contains documents of a single
author. The clusters may be from di�erent candidate sets. For each
t th training step, we �rst uniformly sample the number of clus-
ters Kt from [Kmin,Kmax]. Then, we sample Kt clusters from C to
construct a pseudo-candidate set Ct . Let DCt =

⋃
Ci ∈Ct {D ∈ Ci }

denotes all the documents within C and z denotes a �xed number
of sample size. We then sample a set of z documents Dt from DCt
with replacement. We note that Dt may contain duplicate docu-
ments and the order ofDt is arbitrary. In this way, we can construct
in�nite amount of pseudo-training examples from C. We use a neu-
ral network architecture h(Dt ) → R with a bi-directional LSTM as
encoder and a one-dimensional fully-connected layer as decoder.
The model takes the raw feature embedding xi of each document
Di ∈ Dt as input. We optimize the Mean Squared Logarithmic
Error as follows:

Lh =
1
N

a∑
t=1
[log(1 + h(Dt )) − log(1 + Kt )]2 (8)

Algorithm 1 summarizes the pseudo-training data generation
strategy for cluster size estimation described above. Our experi-
mental results (in Section 5.6) suggest that in our task the proposed
method is signi�cantly better than traditional X-means approach.

4.3 Continuous Integration
Our system integrates new scholarly documents in a streaming
fashion. Based on our statistics, there are more than 500,000 new
documents being integrated into the system every month. Thus, it is
crucial for us the e�ciently handle the ever-growing data volume.
Although e�ciency is an important objective for designing our
disambiguation method, it is still impossible for us to re-compute
the clustering from scratch for every single new document. The
main time cost comes from local linkage learning, clustering and
the IO overhead of retrieving all the documents associated with
a candidate set from the database. Thus, instead, we maintain a



ALGORITHM 1: Pseudo-training data generation strategy for
cluster size estimation. (Dt ,Kt ) is a training example for RNN
model h(D) → R.
Input: Clean clusters C, Kmin, Kmax, sample size z, step t ;
Output: Pseudo-training example (Dt ,Kt );
Kt ← Sample from [Kmin,Kmax];
Ct ← Sample Kt clusters from C;
Dt ← Sample z documents from

⋃
Ci ∈Ct {D ∈ Ci } with

replacement;
return (Dt ,Kt );

priority queue of every candidate sets and update each candidate set
in an iterative manner. However, a full update of all the candidate
sets usually takes weeks which is not acceptable for an online
system.
Real-time Update. To overcome this issue, each new document
D∗ will �rst be greedily assigned to an existing pro�le in the fol-
lowing way. We search for a set of pro�les Hits(D∗) = {Ck } based
on the author name and a�liation using an inverted index of all
the pro�les in the system where each pro�le is corresponding to
a cluster of documents. If there are multiple hits, we retrieve the
global embeddings {yi } of documents {Di ∈

⋃
Ck } and construct

a local kNN classi�er to �nd the best assignment where each Ck is
a class and {(yi ,Ck̂ )|Di ∈ Ck̂ } is a set of data points (documents)
with their labels (corresponding pro�les). This simple strategy en-
ables us to update the documents almost in real-time. Although the
assignment may be sub-optimal, it will be corrected by the next
iteration of clustering re-computation.
Data Consistency. Another issue we are facing with in an online
system is how tomaintain the consistency between each iteration of
the updates. Due to the unsupervised nature of clustering, the index
of each cluster is anonymous. Thus, after re-computing the cluster-
ing, the index of clusters might be inconsistent with the former ones.
This is critical for an online system as each cluster is associated
with an individual pro�le, herein a change may signi�cantly harm
user experience. Hence, after obtaining a new clustering Ct+1, we
search for an optimal matching between it and its previous version
Ct . We de�ne the optimal matching M̂CtCt+1 as:

M̂CtCt+1 = arg max
MCt Ct+1

∑
(Ci ,Cj )∈MCt Ct+1

sim(Ci ,Cj ), (9)

subject to one-to-one matching constraint, where sim(Ci ,Cj ) is
de�ned as the Jaccard coe�cient. An optimal one-to-one mapping
is found using Kuhn-Munkres algorithm [15].

4.4 Human in the Loop
The automatically generated clusterings are far from being perfect.
Thus, to improve the accuracy we need to involve human in the loop
of author disambiguation. In our system, we allow both users and
professional annotators to provide feedback based on the clustering
results. The supported feedbacks include:

(1) Delete: removing a document Di from a pro�le Ck and
adding an identity constraint (Di ,Ck , 0) into S I.

(2) Insert: adding a document Di in to a pro�le Ck and adding
an identity constrain (Di ,Ck , 1) into S I.

(3) Split: annotating a pro�leCk as over-merged and requesting
clustering within the pro�le.

(4) Merge: merge all the documents from Ck to Ck ′ .
(5) Create: creating an empty pro�le Ck .
(6) Con�rm: label a pro�le Ck as a clean cluster and adding
{(Di ,Ck , 1)|Di ∈ Ck } into S I.

To leverage user feedbacks in the algorithm, we translate the iden-
tity constraints S I to pairwise constraints SP according to Equation
(1). Pairwise constraints are used in both of the two embedding
learning phases.

In global metric learning phrase (Section 4.1.1), the training set
T is generated from SP in the following way: 1) Sample a constraint
(Di ,D j ,yi j ) from SP. 2) If yi j = 0, sample a constraint (Di ,Dl , 1)
from SP and generate a triplet (Di ,Dl ,D j ). 3) Otherwise, sample a
random documentDl ′ from the whole document space and generate
a triplet (Di ,D j ,Dl ′).

In local linkage learning phrase (Section 4.1.2), we re�ne the local
linkage graph G = (D, E) based on SP. We add an edge (Di ,D j )
into E if

(Di ,D j , 1) ∈ SP ∧ (Di ,D j ) < E ∧ (Di ,D j ) ∈ D × D,

and remove edge (Di ,D j ) from E if

(Di ,D j , 0) ∈ SP ∧ (Di ,D j ) ∈ E .

Identity constraints S I are also used to generate pseudo-training
set for clustering size estimation described in Section 4.2. The clean
cluster set C is constructed by:

C = {Ck |∃(·,Ck , 1) ∈ S I},where Ck = {Di |(Di ,Ck , 1) ∈ S I}

4.5 Discussion
The global metric learning model f is inductive in the sense that it
is able to be employed by a new document that has not been seen
in the training time, while the local linkage model д is transductive,
meaning that it is not able to generalize to unseen instances.

Empirically, with limited labeled data, the local model performs
better since it leverages �ne-grain information within a candidate
set. However, the global model is particularly useful in our system
for two reasons. First, most candidate sets do not have any labeled
data since the human annotations are concentrated on a small frac-
tion of the pro�les. The global model is able to transfer external
supervision from other candidate sets to improve the performance
of the local model. Second, as we described in Section 4.3, construct-
ing and learning from the local linkage graph is time-consuming.
It is infeasible for us to re-train the local model for every single
new document. The inductive nature of the global model enables
us to instantly determine a fairly good temporary assignment for
an incoming document.

5 EXPERIMENTS
All codes and data used in this work are publicly available.5

5https://github.com/neozhangthe1/disambiguation/

https://github.com/neozhangthe1/disambiguation/


Table 1: Results of Author Name Disambiguation.

AMiner Zhang et al. GHOST Louppe et al. Rule

Name Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Xu Xu 74.18 45.86 56.68 48.16 41.87 44.80 61.34 21.79 32.15 22.55 64.40 33.40 10.75 97.23 19.35
Rong Yu 89.13 46.51 61.12 65.48 40.85 50.32 92.00 36.41 52.17 38.85 91.43 54.53 30.81 97.79 46.86
Yong Tian 76.32 51.95 61.82 70.74 56.85 63.04 86.94 54.58 67.06 32.08 63.71 42.67 10.37 93.79 18.67
Lu Han 51.78 28.05 36.39 47.88 20.62 28.82 69.72 17.39 27.84 30.25 46.65 36.70 13.66 89.16 23.69
Lin Huang 77.10 32.87 46.09 71.84 34.17 46.31 86.15 17.25 28.74 24.86 71.32 36.87 13.86 99.46 24.33
Kexin Xu 91.37 98.64 94.87 90.02 82.47 86.08 92.90 28.52 43.64 91.26 98.35 94.67 91.45 99.60 95.35
Wei Quan 53.88 39.02 45.26 64.45 47.66 54.77 86.42 27.80 42.07 37.86 63.41 47.41 28.16 93.80 43.32
Tao Deng 81.63 43.62 56.86 53.04 29.89 38.23 73.33 24.50 36.73 40.46 51.38 45.27 16.30 95.16 27.84
Hongbin Li 77.20 69.21 72.99 54.66 53.05 53.84 56.29 29.12 38.39 19.48 85.96 31.77 13.25 96.41 23.30
Hua Bai 71.49 39.73 51.08 58.58 35.90 44.52 83.06 29.54 43.58 36.39 41.33 38.70 25.47 98.51 40.47
Meiling Chen 74.93 44.70 55.99 59.36 28.80 38.79 86.11 23.85 37.35 58.32 47.14 52.14 59.55 82.07 69.02
Yanqing Wang 71.52 75.33 73.37 60.40 51.97 55.87 80.79 40.39 53.86 29.64 79.08 43.11 25.72 62.47 36.44
Xudong Zhang 62.40 22.54 33.12 70.20 23.35 35.04 85.75 7.23 13.34 72.38 79.83 75.92 63.22 17.94 27.95
Qiang Shi 52.20 36.15 42.72 43.84 36.94 40.10 53.72 26.80 35.76 35.31 47.18 40.39 28.79 93.89 44.06
Min Zheng 57.65 22.35 32.21 54.76 19.70 28.98 80.50 15.21 25.58 25.86 32.67 28.87 15.41 98.72 26.66
Avg. 77.96 63.03 67.79 70.63 59.53 62.81 81.62 40.43 50.23 57.09 77.22 63.10 44.94 89.30 53.42

5.1 Data Summarization
To systematically evaluate the proposed method, we construct a
benchmark based on AMiner. We sampled 100 author names from
a well-labeled subset of AMiner database. The benchmark consists
of 70,258 documents from 12,798 authors. The labeling process was
carried out based on the publication lists on the authors’ homepages
and the a�liations, e-mail addresses in the web databases (e.g.
Scopus, ACM Digital Library, etc). We applied “majority voting" to
cope with the disagreements in the annotation process. Comparing
to existing benchmarks for name disambiguation6,7, our benchmark
is signi�cantly larger (in terms of the number of documents) and
more challenging (since each candidate set contains much more
clusters).

5.2 Baseline Comparison Methods
To validate the performance of our proposed approach, we compare
it against three state-of-the-art name disambiguation methods. For
a fair comparison, the number of clusters is set to the true value.
Zhang et al. [33]: This method constructs three local graphs for a
candidate set based on coauthors and document similarity. A graph
embedding is learned for each candidate set by sampling triplets
from the graph. The �nal result is generated by agglomerative
hierarchical clustering.
GHOST [5]: The second method is purely based on coauthor
names. For each query name, it constructs a graph by collapsing
all the coauthors with identical names to one single node. The
distance between two nodes is measured based on the number
of valid paths. The �nal clustering result is generated by a�nity
propagation algorithm.
Louppe et al. [17]: This method �rst trains a pairwise distance
function base on a set of carefully designed similarity features. A
semi-supervised HAC algorithm is used to determine clusters.

6https://aminer.org/disambiguation
7http://clgiles.ist.psu.edu/data/

Rule: Rule-based method constructs local linkage graphs by con-
necting two documents when their co-authors, a�liations or publi-
cation venues are strictly matched. The clustering is obtained by
simply partitioning the graph into connected components.

Our method is indicated by AMiner. In order to analyze the
contribution of each component in our solution, we also present
our performance at di�erent stages in Table 2.
Embedding: This is the clustering result based on the original
feature space, where each document Di is represented as its feature
embedding xi de�ned in Section 4.1.1.
Global: This shows the result after global metric learning (Section
4.1.1). The embedding space is �ne-tuned by optimizing a triplet
loss. We use the global embeddings {yi } as the of clustering.
Local: This method uses orthogonal one-hot vectors as the input
node features of local linkage learning (Section 4.1.2).

5.3 Experimental Results
Table 1 shows the performance of di�erent disambiguation methods
on some sampled names. We use pairwise Precision, Recall, and F1-
score to evaluate our method against the alternative ones. A macro
averaged score of each metric is calculated according to all test
names. A holdout sample of the dataset is used for training. Louppe
et al. use carefully designed features to learn a supervised pairwise
similarity function, instead, we avoid hand-crafted features by learn-
ing from raw input features. Both GHOST and Zhang et al. leverage
the structure of coauthor graphs. GHOST directly partitions the
coauthor graph by a�nity propagation. Zhang et al. transforms
coauthor graphs into local embeddings by sampling edges from
the graph, which is closely related to our local linkage learning
method. However, by incorporating both global supervision and
local linkage structure, our method (AMiner) outperforms the base-
lines in terms of F1-score (+7.93% over Zhang et al., +34.96% over
GHOST and +7.43% over Louppe et al. relatively). We also tested a
baseline method that directly partitions local linkage graphs into



(a) Emb (Ground truth) (b) Emb + Global (Ground truth) (c) Emb + Global + Local (Ground truth)

(d) Emb (F1: 35.36%) (e) Emb + Global (F1: 42.75%) (f) Emb + Global + Local (F1: 61.11%)

Figure 4: t-SNEVisualization of embedding spaces on a candidate set. Each color in (a), (b), (c) denotes an individual ground truth cluster, while
each color in (d), (e), (f) denotes a predicted cluster by hierarchical agglomerative clustering. Emb indicates the original feature embedding.
Global and Local represent the use of global metric learning and local linkage learning respectively. The dashed black ellipses in (a), (b), (c)
circle the points of the same ground truth cluster.

Table 2: Contribution of Each Component.

Pre. Rec. F1
Embedding 66.85 42.04 49.79
Global 68.40 47.42 54.56
Local 68.97 67.68 66.55
Overall 77.96 63.03 67.79

connected components which yields low precision, hence veri�es
the e�ectiveness of local linkage learning.

5.4 Contribution Analysis
In Table 2, some incremental results of our method are presented.
Global outperforms Embedding by +9.58% which veri�es the e�ec-
tiveness of leveraging global supervision. Local achieves a much
better performance than Global (+18.01% in terms of F1) which
shows the advantage of the local model over the global model with
limited training data. AMiner outperforms Local by +1.86% in terms
of F1-score and +13.03% in terms of Precision which veri�es the
e�ectiveness of incorporating global supervision in local models.
In our system, a higher precision is preferred for the sake of user
experience.

5.5 Embedding Analysis
In order to further evaluate the e�ect of global metric learning
and local linkage learning, we project the embedding generated at
di�erent stages into 2-dimensional Euclidean space which can be
easily visualized. Figure 4 shows the t-SNE plot of the embedding
of a candidate set where each point is a document. In the �rst row,
the color of a point denotes the corresponding ground truth cluster,
while in the second row, the color denotes the cluster predicted by
hierarchical agglomerative clustering.

Figure 4a shows the original feature embedding space without
global metric learning and local linkage learning. We can easily
observe that points from di�erent clusters are not well separated in
Figure 4a, where there are a signi�cant amount of overlaps between
di�erent clusters. The dashed black ellipses circle the points of a
green cluster which are scattered over a wide area in the space.
Figure 4b shows the embedding improved by global metric learning
where the green points form two clusters in the embedding space
(represented by two dashed black ellipses). Figure 4c shows the
�nal embedding after local linkage learning. We can see that the
green cluster is well separated from other points in the embedding
space.

Figure 4d, 4e and 4f demonstrate the clustering results generated
byK-means algorithm. We achieve an F1 of 61.11% with both global



Table 3: Results of Clustering Size Estimation.

Actual RNN Regression X-means
RMSLE - 0.2493 1.6006 2.1065

Song Chen 125 101.39 173.80 10
Jian Du 87 62.89 110.21 5

Fosong Wang 4 5.71 184.75 5
J Yu 346 74.06 24.92 7

Yang Shen 157 153.77 89.52 7
Xiaobing Luo 13 11.01 143.44 3
Jian Feng 102 149.73 113.88 8
Lu Han 129 114.51 173.16 7

Figure 5: The performance of with pairwise constraints.

metric learning and local linkage learning which signi�cantly out-
performs the result with the original feature embedding and global
metric learning only.

5.6 Cluster Size Estimation
We compare our proposed cluster size estimation method with
the traditional X-means [19] algorithm with Bayesian Informa-
tion Criterion as the measurement of clustering quality. We set
the Kmin = 1 and Kmax = 300. Our RNN is trained according to
the pseudo-training data sampling method described in Section 4.2.
Half of the labeled candidate sets are used for training and the other
half are used for evaluation. There is no overlap between training
and test data. We evaluate the performance of both methods using
Root Mean Squared Logarithmic Error. Table 3 summarizes the re-
sults. From Table 3 our method achieves a RMSLE of 0.2493 which
signi�cantly outperforms the baseline. To provide a more compre-
hensive view of the performance, we also demonstrate results of
some individual candidate sets in Table 3 comparing to the actual
number of clusters. It is easy to see that the maximum estimation
from X -means is around 10 which is not usable since there can be
hundreds of clusters in each candidate set. Our method provides
an estimation within a reasonable error range for most cases.

To further illustrate the e�ectiveness of RNN encoder, we test
the same method except changing the RNN to a DNNwith two fully
connected layers that take the summation of the feature embeddings
as input. The result is labeled as Regression in Table 3. We can see
that without RNN encoder, the estimation is almost random. This
result veri�es the ability of RNN to encode a discrete set of data
points.

5.7 E�ect of Constraints
In this experiment, we show the e�ect of adding labeled constraints
into local linkage learning. As we described in Section 4.4, pairwise
constraints SP can be leveraged in local linkage learning by re�ning
the local linkage graphG. The experiment is conducted by sampling
pairs of documents within a candidate set and adding them into the
pairwise constraint set based on their ground truth clusters. Figure
5 shows the performance by labeling di�erent amount of pairs. The
X-axis is the proportion of pairs that are labeled and the Y-axis is the
corresponding F1-score. We can see that the performance improves
signi�cantly with a few pairs being labeled. Active learning can be
leveraged here to improve the labeling e�ciency, which we intend
to explore as future work.

6 CONCLUSION
To conclude, in this paper, we propose a novel representation learn-
ing framework by leveraging both global supervision and local
contexts. Experimental results verify the advantage of our method
over state-of-the-art name disambiguation methods. We address the
problem of estimating cluster size by learning a recurrent neural
network on sampled pseudo-training set. We discuss the lessons
learned from deploying the name disambiguation framework in
a large-scale online system and present how to leverage human
annotations to improve disambiguation accuracy.
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