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Real social networks are complex... 

• Different social ties have different influence on people 

– Close friends vs. Acquaintances 

– Colleagues vs. Family members 

• However, existing networks (e.g., Facebook and Twitter) are 

trying to lump everyone into one big network 

– FB tries to solve this problem via lists/groups 

– However… 

• Google+ 

which circle? Users do not take time to create it. 
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Example 1. Advisor-advisee relationship 

Arnetminer 
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Example 2. Trustful relationship
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Example 3: Friendship in mobile network 
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Inferring Social Ties Across Networks  
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Inferring Social Ties Across Networks  
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Questions: 
  - What are the fundamental forces behind? 

  - A generalized framework for inferring social ties? 

  - How to connect the different networks? 
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Problem Formulation in a Single Network 

Input: G=(V,EL,EU,RL,W)     

V: Set of Users 

EL,RL: Labeled relationships 

Friend 

Other 

EU: Unlabeled relationships 

? 
? 

Input: 

G=(V,EL,EU,RL,W) 

Output: 

f: GR  

? 

Other 
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Basic Idea 
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y12
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Partially Labeled Pairwise 

Factor Graph Model (PLP-FGM) 

Map relationship to nodes in model 

 

Attribute factors f 

  

Correlation factor g 

 
Constraint factor h 

Partially Labeled 

Model 

Input Model 

 

Latent Variable 

Example: 

   Call frequency between two users? 

Example: 

   A makes call to B immediately after the call to C. 

y12=Friend 
 

y21=Friend 

y16=Other 

 

Problem: 

    For each relationship, identify which type  

has the highest probability? 
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Solutions(con’t) 

• Different ways to instantiate factors 

– We use exponential-linear functions 

• Attribute Factor:  

 

 

• Correlation / Constraint Factor: 

 

 

 

– Log-Likelihood of labeled Data: 

Parameters to estimate 
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Learning Algorithm 

• Maximize the log-likelihood of labeled relationships 

 

 

Gradient Ascent Method 

 
Expectation Computing 

Loopy Belief Propagation 
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Still Challenges? 

 

Questions: 
  - How to obtain sufficiently training data? 

  - Can we leverage knowledge from other network? 
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Inferring Social Ties Across Networks  
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Social Theories 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 
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Observations:  

(1) The underlying networks are unbalanced; 

(2) While the friendship networks are balanced. 
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Social Theories—Structural hole 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

 

Structural hole 

Observations: Users are more likely (+25-

150% higher than change) to have the same 

type of  relationship with C if C spans 

structural holes 
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Social Theories—Social status 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

Observations:  99% of triads in 

the networks satisfy the social 

status theory 

Note: Given a triad (A,B,C), let us use 1 to denote the advisor-advisee relationship and 0 colleague 

relationship. Thus the number 011 to denote A and B are colleagues, B is C’s advisor and A is C’s advisor. 
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Social Theories—Two-step-flow 

• Social balance theory 

• Structural hole theory 

• Social status theory 

• Two-step-flow theory 

OL : Opinion leader;      

OU : Ordinary user. 

 

Observations:  Opinion leaders are 

more likely (+71%-84% higher than 

chance) to have a higher social-status 

than ordinary users. 
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Transfer Factor Graph Model 
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Mathematical Formulation 

Features defined in 

source network 

Triad-based features shared 

across networks 

Features defined in 

target network 
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Data Sets 

• Epinions a network of product reviewers: 131,828 nodes (users) 

and 841,372 edges 

– trust relationships between users 

• Slashdot: 82,144 users and 59,202 edges  

– “friend” relationships between users 

• Mobile: 107 mobile users and 5,436 edges 

– to infer friendships between users 

• Coauthor: 815,946 authors and 2,792,833 coauthor relationships 

– to infer advisor-advisee relationships between coauthors 

• Enron: 151 Enron employees and 3572 edges 

– to infer manager-subordinate relationships between users. 

Undirected network 

Directed network 
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Results – undirected networks 

SVM and CRF are 

two baseline 

methods 

PFG is the proposed 

partially-labeled 

factor graph 

model 

TranFG is the 

proposed 

transfer–based 

factor graph 

model. 
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Results – directed networks 

SVM and CRF are 

two baseline 

methods 

PFG is the proposed 

partially-labeled 

factor graph 

model 

TranFG is the 

proposed 

transfer–based 

factor graph 

model. 
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Factor Contribution Analysis 

SH-Structural hole; 

SB-Social balance. 

 

Undirected Network 

OL-Opinion leader; 

SS-Social status. 

 

Directed Network 



25 

Conclusions and Future Work 

• Conclusions 

– different types of social ties have essentially 

different structural patterns in social networks; 

– By incorporating social theories, our proposed 

model can significantly improve (+4-14%) the 

inferring accuracy. 
 

• Future work 

– Inferring complex relationships between users, e.g., 

family, colleague, manager-subordinate; 

– Active learning for inferring social ties. 
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HP: http://keg.cs.tsinghua.edu.cn/jietang/  

System: http://arnetminer.org 

 

Thanks! 

http://keg.cs.tsinghua.edu.cn/jietang/
http://arnetminer.org/
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Even complex than we imaged! 

• Only 16% of mobile phone users in Europe 

have created custom contact groups 

– users do not take the time to create it 

– users do not know how to circle their friends 

 

• The fact is that our social network is black-

… 
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Example 2. Manager-employee relationship

CEO 

Employee 

How to 
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Manager 

Enterprise email network 

User interactions may form implicit groups  
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What is behind? 
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What is behind? 

Publication network 

Mobile communication network 

Twitter’s following network 
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Questions: 
  - What are the fundamental forces behind? 

  - A generalized framework for inferring social ties? 

  - How to connect the different networks? 
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Problem : Transfer Learning 

Input: two networks GS and Gt 

              with |ES
L|>>|ET

L| 

Input: 

GS, GT 

Output: 

f: (GT|GS)R  

Source network Target network 
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Observation – Social balance 

 

Different networks have very  

different balance probabilities. 

friendships of the three  

networks have a relatively  

similar probability. 
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Observation—Structural hole 

Users are more likely (average 

+70% higher than change) to 

have the same type of  

relationship with C if C spans a 

structural hole 



34 

Observation—Two-step-flow 

OL : Opinion leader. 

OU : Ordinary user. 

Opinion leaders are more likely 

to have a higher social-status 

than ordinary users. 
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Observation—Social status 

99% of triads in the two 

networks satisfy the social 

status theory 

The two networks share a 

similar distribution on the five 

frequent forms of triads. 
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Undirected networks 
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Directed 

 network 
 


