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Real social networks are complex..(’

 Different social ties have different influence on people
— Close friends vs. Acquaintances
— Colleagues vs. Family members

 However, existing networks (e.g., Facebook and Twitter) are
trying to lump everyone into one big network
— FB tries to solve this problem via lists/groups
— However...
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which circle? Users do not take time to create it.
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Example 1. Advisor-advisee relations
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Example 2. Trustful relationship
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Inferring Social Ties Across Networks

Input: Heterogeneous Networks
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Output: Inferred social ties in
different networks
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Inferring Social Ties Across Networks( =

Input: Heterogeneous Networks Output: Inferred social ties in
different networks

- Reviewer network
Epinions
Adam
/ fen Adam &
- % distrust trust
Bob Product 1 \ Bob / \
— 11 1 (Y A c

Questions:
- What are the fundamental forces behind?
- A generalized framework for inferring social ties?
- How to connect the different networks?
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Problem Formulation in a Single Network

Input: G @03@@ W)

Other Viend V: Set of Users

& EL RL: Labeled relationships
&
? EY: Unlabeled relationships




Basic Idea




Partially Labeled Pairwise
Factor Graph Model (PLP-FGM)

Constraint factor h <— Partially Labeled
PLP-EGM @‘
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Problem: _ - | DS AttribUte factors f
For each relationship, identify which type

has the highest probability?

Example:
A makes call to B immediately after the call to C.




Solutions ¢,y

« Different ways to instantiate factors

— We use exponential-linear functions
 Attribute Factor:

1
f(yi,xi) = ——exp{A" ®(yi, %)}
A
e Correlation / Constraint Factor:

g(yi,G(yi)):Z%exp{ > aglysy)}

;i €G (i)

h(yh H(yz)) = Ziﬁ EXP{ Z ﬁTh(yﬁ y.i-‘)}

v €H (y;)

— Log-Likelihood of labeled Data:

O(0) = log Z exp{0T S} — logz exp{0’ S}
Y|y L Y

Parameters to estimate 8 = [A, a, 8],s = [®T, g7, hT]T
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Learning Algorithm

« Maximize the log-likelihood of labeled relationships

Input: learning rate n
Output: learned parameters ¢

Initialize €;

repeat

Calculate E, |y L S using LBP ;

Calculate E,_y|)S using LBP ;

Calculate the gradient of 6 according to Eq. 7:

Vg = EPE{Y|YL,G}S - Epe(YIG'}S

Update parameter € with the learning rate 7: Expectation Computing
oo = 0.0 —n -V, LOOPY Belief Propagation

until Ceonvergence;

Algorithm 1: Learning PLP-FGM.

Gradient Ascent Method
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Still Challenges?

Questions:
- How to obtain sufficiently training data?
- Can we leverage knowledge from other network?
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Inferring Social Ties Across Networks

Input: Heterogeneous Networks Output: Inferred social ties in
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Social Theories

» Social balance theory 1

" [EEEpinions
[Islashdot
e Structural hole theory ™ Fastes
 Social status theory
- Two-step-flowtheory | B || o [

Observations:
(1) The underlying networks are unbalanced;
(2) While the friendship networks are balanced.

friend

(A) (B) (©) (D)




Soclal Theories—Structural hole

IRandom

» Social balance theory | | ' JsH-not connected
« Structural hole theory o

« Social status theory
« Two-step-flow theory & u

Epinions Slashdot MobileU

Observations: Users are more likely (+25-

150% higher than change) to have the same
T type of relationship with C if C spans
uctural holes

Structural hole




» Social balance theory
« Structural hole theory
» Social status theory
» Two-step-flow theory

0.8, ———
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04 | Observations: 99% of triads in
oo I I I | the networks satisfy the social
. H I status theory
. 1 LM s R
Enron Coauthor MobileD

Note: Given a triad (A,B,C), let us use 1 to denote the advisor-advisee relationship and 0O colleague
relationship. Thus the number 011 to denote A and B are colleagues, B is C’'s advisor and A is C’s advisor.



Socilal Theories—Two-step-flow

Social balance theory
Structural hole theory
Social status theory

Two-step-flow theory
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OL : Opinion leader;
OU : Ordinary user.

Observations: Opinion leaders are
more likely (+71%-84% higher than
chance) to have a higher social-status
than ordinary users.
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Transfer Factor Graph Model
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Mathematical Formulation

Features defined in Features defined in
source network target network

O(a, B, 1) = Ogla, p) + Qe (5, 1) \
\Vs| d |V |

— Z Zl:[-?gj 3.’}' yﬁ + Z Z 'S_?gj z_j s Ys )

i=1 j=1 i=1 j=

+Z“’k( ST e YR ST (YD)

ceGE ceEGp
— log Z \/

Triad-based features shared
across networks
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Data Sets

Epinions a network of product reviewers: 131,828 nodes (users)
and 841,372 edges

— trust relationships between users
Slashdot: 82,144 users and 59,202 edges
— “friend” relationships between users

Mobile: 107 mobile users and 5,436 edges
— to infer friendships between users Undirected network

Coauthor: 815,946 authors and 2,792,833 coauthor relationships
— to infer advisor-advisee relationships between coauthors

Enron: 151 Enron employees and 3572 edges

— to infer manager-subordinate relationships between users
Directed network




Results — undirected networks
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Data Set Method Prec. Rec. F1-score
SVM and CRF are - SVM 0.7157 09733  0.8249
two baseline Epmions (S) to CRF | 08919 06710  0.7658
methods Slasm{f (1) PFG | 09300 0.6436  0.7607
PFG is the proposed (40%) TranFG | 0.9414 09446  0.9430
partially-labeled SVM | 09132 09925 009512
factor graph Slashdot (3) to CRF | 0.8923 09911  0.9393
model Ep””“f () PFG | 0.9954 09787  0.9870
TranFG is the (40%) TranFG | 0.9954 0.9787 0.9870
proposed - SVM | 0.8983 05955  0.7162
transfer—based Epinions (5) to CRF | 09455 05417  0.6887
factor graph Mobile (T) PFG | 1.0000 05924  0.7440
model. (40%) TranFG | 0.8239 0.8344  0.8291
SVM | 08983 05955  0.7162
Sl;;:il((?)to CRF | 09455 05417  0.6887
0% PFG | 1.0000 05924  0.7440
TranFG | 0.7258 0.8599  (.7872




Results — directed networks

SVM and CRF are
two baseline
methods

PFG is the proposed
partially-labeled
factor graph
model

TranFG is the
proposed
transfer—based
factor graph
model.
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Data Set Method Prec. Rec. F1l-score
SVM | 09524 05556  0.7018
Coauthor (S) to CRF | 09565 05366  0.6875
EI;‘;I;S ) PFG | 0.9730 0.6545  0.7826
TranFG | 0.9556 0.7818  0.8600
SVM | 0.6910 03727  0.4842
Enron (S) to CRF | 1.0000 03043 04666
Coauthor (T) PFG | 09916 04591  0.6277
(40%) TPFG | 0.5936 0.7611  0.6669
TranFG | 0.9793 05525  0.7065
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Conclusions and Future Work

e Conclusions

— different types of social ties have essentially
different structural patterns in social networks;

— By Incorporating social theories, our proposed
model can significantly improve (+4-14%) the
Inferring accuracy.

e Future work

— Inferring complex relationships between users, e.g.,
family, colleague, manager-subordinate;

— Active learning for inferring social ties.




Thanks!

HP: http://keg.cs.tsinghua.edu.cn/jietang/

System: http://arnetminer.org



http://keg.cs.tsinghua.edu.cn/jietang/
http://arnetminer.org/

Even complex than we imaged!

* Only 16% of mobile phone users in Europe
have created custom contact groups
— users do not take the time to create it
— users do not know how to circle their friends

 The fact is that our social network 1s black-
white. ..




Example 2. Manager-employee relationshi
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What is behind? T
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Questions:
- What are the fundamental forces behind?
- A generalized framework for inferring social ties?
- How to connect the different networks?
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Problem : Transfer Learning

Input: two networks@ and
with |[EH>>|ELY

Source network Target network )\
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Observation - Social balance
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Different networks have very
different balance probabilities.

friendships of the three
networks have a relatively
similar probability.
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Observation—Structural hole

IRandom |
| |SH-not connected
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Users are more likely (average
+70% higher than change) to
have the same type of
relationship with C if C spans a
structural hole




Observation—Two-step-flow
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OL : Opinion leader.
OU : Ordinary usetr.

Opinion leaders are more likely
to have a higher social-status
than ordinary users.
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Observation—Social status
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o011 . :
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04l =;88_ status theory
0.2 I The two networks share a
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0 .
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Directed
network
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