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Abstract Social influence is the behavioral change of a person because of the perceived

relationship with other people, organizations and society in general. Social in-

fluence has been a widely accepted phenomenon in social networks for decades.

Many applications have been built based around the implicit notation of social

influence between people, such as marketing, advertisement and recommenda-

tions. With the exponential growth of online social network services such as

Facebook and Twitter, social influence can for the first time be measured over

a large population. In this chapter, we survey the research on social influence

analysis with a focus on the computational aspects. First, we present statistical

measurements related to social influence. Second, we describe the literature on

social similarity and influences. Third, we present the research on social influ-

ence maximization which has many practical applications including marketing

and advertisement.

Keywords: Social network analysis, Social influence analysis, Network centrality, Influence

maximization

Social influence refers to the behavioral change of individuals affected by

others in a network. Social influence is an intuitive and well-accepted phe-

nomenon in social networks[22]. The strength of social influence depends on

many factors such as the strength of relationships between people in the net-

works, the network distance between users, temporal effects, characteristics of
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networks and individuals in the network. In this chapter, we focus on com-

putational aspect of social influence analysis and describe the measures and

algorithms related to it. More specifically, we aim at qualitatively or quantita-

tively measuring the influence levels of nodes and edges in the network.

First we present standard measures and concepts of social networks and

their connection to social influence measures such as centrality, closeness and

betweenness. These measures are fundamental concepts about social network

analysis, and are also deeply related to the importance or influence of nodes or

edges in the networks.

Second, we present the qualitative and quantitative social influence analysis

and applications, which has been well studied in sociology research. Much

of the work focuses on differentiating social correlation and social influence.

Many qualitative models and tests have been proposed to explain social phe-

nomena in social networks. However, most studies are limited to smaller

scale data sets and macro-level observation, partly because of the lack of high-

quality longitudinal data on social networks.

Finally, we survey influence maximization techniques, which go beyond

simple statistic measures such as centrality. We also present applications of

influence maximization. These include methods for predicting customer be-

havior and online advertising through viral marketing.

1. Influence Related Statistics
A social network is modeled as a graph G = {V,E}, where V is the set of

nodes, and E is the set of edges. As is the convention, the links correspond

to actors (people) and the links correspond to social relationships. At the local

level, social influence is a directional effect from node A to node B, and is

related to the edge strength from A to B. On a global level, some nodes can

have intrinsically higher influence than others due to network structure. These

global measures are often associated with nodes in the network rather than

edges. We next present the concepts and measures at a local and global level

respectively.

1.1 Edge Measures
Edge measures relate the influence-based concepts and measures on a pair

of nodes. This explains the simple influence-related processes and interactions

between individual nodes.

Tie strength. According to Granovetter’s seminal work [32], the tie strength

between two nodes depends on the overlap of their neighborhoods. In partic-

ular, the more common neighbors that a pair of nodes A and B may have, the

stronger the tie between them. If the overlap of neighborhoods between A and
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B is large, we consider A and B to have a strong tie. Otherwise, they are con-

sidered to have a weak tie. We formally define the strength S(A,B) in terms

of their Jaccard coefficient.

S(A,B) =
|nA ∩ nB|
|nA ∪ nB|

Here, nA and nB indicate the neighborhoods of A and B, respectively. Some-

times, the tie strength is defined under a different name called embeddedness.

The embeddedness of an edge is high if two nodes incident on the edge have

a high overlap of neighborhoods. When two individuals are connected by an

embedded edge, it makes it easier for them to trust one another, because it

is easier to find out dishonest behavior through mutual friends [33]. On the

other end, when embeddedness is zero, two end nodes have no mutual friends.

Therefore, it is riskier for them to trust each other because there are no mutual

friends for behavioral verification.

A corollary from this tie strength is the hypothesis of triadic closure. This

relates to the nature of the ties between sets of three actors A, B, and C. If

strong ties connect A to B and A to C, then B and C are likely to be connected

by a strong tie as well. Conversely, if A-B and A-C are weak ties, B and C are

less likely to have a strong tie. Triadic closure is measured by the clustering

coefficient of the network[35, 67]. The clustering coefficient of a node A is

defined as the probability that two randomly selected friends of A are friends

with each other. In other words, it is the fraction of pairs of friends of A that

are linked to one another. This is naturally related to the problem of triangle

counting in a network. Let nΔ be the number of triangles in the network and

|E| be the number of edges. The clustering coefficient is formally defined as

follows:

C =
6nΔ

|E|
The naive way of counting the number of triangles nΔ is expensive. An inter-

esting connection between nΔ and the eigenvalues of the network was discov-

ered by Tsourakakis [66]. This work shows that nΔ is approximately equal to

the third-moment of the eigenvalues (or
∑

λ3
i , where λi is the ith eigenvalue).

Given the skewed distribution of eigenvalues, the triangle counts can be ap-

proximated by computing the third moment of only a small number of the top

eigenvalues. This also provides an efficient way for computing the clustering

coefficient.

Weak ties. When the overlap of the neighborhoods of A and B is small, the

connection A-B is considered to be a weak tie. When there is no overlap, the

connection A-B is a local bridge [32]. In the extreme case, the removal of A-B

may result in the disconnection of the connected component containing A and
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B. In such a case, the connection A-B may be considered a global bridge. It

may be argued that in real networks, global bridges occur rarely as compared

to local bridges. However, the effect of local and global bridges is quite similar.

Edge Betweenness. Another important measure is the edge betweenness,

which measures the total amount of flow across the edge. Here, we assume

that the information flow between A and B are evenly distributed on the short-

est paths between A and B. Freeman [27, 28] first articulated the concept of

betweenness in the context of sociology. One application of edge between-

ness is that of graph partitioning. The idea is to gradually remove edges of

high betweenness scores to turn the network into a hierarchy of disconnected

components. These disconnected components will be the clusters of nodes in

the network. More detailed studies on clustering methods are presented in the

work by Girvan and Newman [29].

1.2 Node Measures
Node-based centrality is defined in order to measure the importance of a

node in the network. Centrality has attracted a lot of attention as a tool for

studying social networks [28, 9]. A node with high centrality score is usu-

ally considered more highly influential than other nodes in the network. Many

centrality measures have been proposed based on the precise definition of in-

fluence. The main principle to categorize the centrality measures is the type

of random walk computation involved. In particular, the centrality measures

can be grouped into two categories: radial and medial measures [9]. Radial

measures assess random walks that start or end from a given node. On the

other hand, medial measures assess random walks that pass through a given

node. The radial measures are further separated into volume measures and

length measures based on the type of random walks. Volume measures fix the

length of walks and find the volume (or number) of the walks limited by the

length. Length measures fix the volume of the target nodes and find the length

of walks to reach the target volume. Next we introduce some popular centrality

measures based on these categories.

Degree. The first group of the centrality measures is that of the radial and

volume-based measures. The simplest and most popular measure in this cate-

gory is that of degree centrality. Let A be the adjacency matrix of a network,

and deg(i) be the degree of node i. The degree centrality cDEG
i of node i is

defined to be the degree of the node:

cDEG
i = deg(i).

One way of interpreting the degree centrality is that it counts the number of

paths of length 1 that starts from a node. A natural generalization from this
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perspective is the K − path centrality which is the number of paths of length

at most k that start from a node.

Another class of measures are based on the diffusion behavior in the net-

work. The Katz centrality [40] counts the number of walks starting from

a node, while penalizing longer walks. More formally, the Katz centrality

cKATZ
i of node i is defined as follows:

cKATZ
i = eTi (

∞∑

j=1

(βA)j)1

Here, ei is a column vector whose ith element is 1, and all other elements are

0. The value of β is a positive penalty constant between 0 and 1.

A slight variation of the Katz measure is the Bonacich centrality [8] which

allows for negative values of β. The Bonacich centrality cBON
i of node i is

defined as follows:

cBON
i = eTi (

1

β

∞∑

j=1

(βA)j)1

Here the negative weight allows to subtract the even-numbered walks from the

odd-numbered walks which have an interpretation in exchange networks [9].

The Katz and the Bonacich centralities are special cases of the Hubbell cen-

trality [37]. The Hubbell centrality cHUB
i of node i is defined to be

cHUB
i = eTi (

∞∑

j=0

Xj)y

Here, X is a matrix and y is a vector. It can be shown that X = βA and

y = βA1 lead to the Katz centrality, and X = βA and y = A1 lead to the

Bonacich centrality. The eigenvector centrality [7], the principal eigenvector

of the matrix A, is related to the Katz centrality: the eigenvector centrality is

the limit of the Katz centrality as β approaches 1
λ from below [9].

Closeness. The second group of the centrality measures is that of the radial

and length based measures. Unlike the volume based measures, the length

based measures count the length of the walks. The most popular centrality

measure in this group is the Freeman’s closeness centrality [28]. It measures

the centrality by computing the average of the shortest distances to all other

nodes. Then, the closeness centrality cCLO
i of node i is defined as follows:

cCLO
i = eTi S1.

Here S be the matrix whose (i, j)th element contains the length of the shortest

path from node i to j and 1 is the all one vector.
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Node Betweenness. As is the case for edges of high betweenness, nodes

of high betweenness occupy critical positions in the network structure, and are

therefore able to play critical roles. This is often enabled by a large amount

of flow, which is carried by nodes which occupy a position at the interface of

tightly-knit groups. Such nodes are considered to have high betweenness. The

concept of betweenness is related to nodes that span structural holes in a social

network. We will discuss more on this point slightly later.

Another popular group of the centrality measures is that of medial measures.

It is called ‘medial’ since all the walks passing through a node are considered.

The most well-known centrality in this group is the Freeman’s betweenness

centrality [27]. It measures how much a given node lies in the shortest paths of

other nodes. The betweenness centrality cBET
i of node i is defined as follows:

cBET
i =

∑

j,k

bjik
bjk

Here bjk is the number of shortest paths from node j to k, and bjik be the

number of shortest paths from node j to k that pass through node i.
The naive algorithm for computing the betweenness involves all-pair short-

est paths. This requires Θ(n3) time and Θ(n2) storage. Brandes [10] designed

a faster algorithm with the use of n single-source-shortest-path algorithms.

This requires O(n+m) space and runs in O(nm) and O(nm+n2 log n) time,

where n is the number of nodes and m is the number of edges.

Newman [52] proposed an alternative betweenness centrality measure based

on random walks on the graph. The main idea is that instead of considering

shortest paths, it considers all possible walks and computes the betweenness

from these different walks. Then, the Newman’s betweenness centrality cNBE
i

of node i is defined as follows:

cNBE
i =

∑

j �=i �=k

R
(i)
jk .

Here R(i) be the matrix whose (j, k)th element R
(i)
jk contains the probability of

a random walk from j to k, which contains i as an intermediate node.

Structural holes. In a network, we call a node a structural hole if it is

connected to multiple local bridges. A canonical example is that a person’s

success within a company or organization often depends on their access to lo-

cal bridges [12]. By removing such a person, an “empty space” will occur in

the network. This is referred to as a structural hole. The person who serves as

a structural hole can interconnect information originating from multiple non-

interacting parties. Therefore, this person is structurally important to the con-

nectivity of diverse regions of the network. Another interesting point is that the



A Survey of Models and Algorithms for Social Influence Analysis 83

interests of the actor representing a structural hole and of the organization may

not be aligned. For the organization, accelerating the information flow between

groups could be beneficial, which requires building of bridges. However, this

building of bridges would come at the expense of structural hole’s latent power

of regulating information flow at the boundaries of these groups.

2. Social Similarity and Influence
A central problem for social influence is to understand the interplay between

similarity and social ties [20]. A lot of research has tried to identify influ-

ence and correlation in social networks from many different aspects: social

similarity and influence [2, 20]; marketing through social influence [21, 55],

influence maximization [41]; social influence model and practice through con-

formity, compliance and obedience [18, 24], and social influence in virtual

worlds [23, 5].

2.1 Homophily
Homophily [43] is one of the most fundamental characteristics of social net-

works. This suggests that an actor in the social network tends to be similar to

their connected neighbors or “friends”. This is a natural result, because the

friends or neighbors of a given actor in the social network are not a random

sample of the underlying population. The neighbors of a given actor in the

social network are often similar to that actor along many different dimensions

including racial and ethnic dimensions, age, their occupations, and their inter-

ests and beliefs. McPherson et al. [48] provide an extensive review of research

in the long and rich history on homophily. Singla et al. [60] has conducted a

large-scale experiment of homophily on real social networks, which includes

data from user interactions in the MSN Messenger network and a subset of

Microsoft Web search data collected in the summer of 2006. They observe

that the similarities between friends is significantly larger than a random pair-

wise sample, especially in attributes such as age, location and query category.

This experiment confirms the existence of homophily at a global scale in large

online social networks.

The phenomenon of homophily can originate from many different mecha-

nisms:

Social influence: This indicates that people tend to follow the behav-

iors of their friends. The social influence effect leads people to adopt

behaviors exhibited by their neighbors.

Selection: This indicates that people tend to create relationships with

other people who are already similar to them;
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Confounding variables: Other unknown variables exist, which may cause

friends to behave similarly with one another.

These three factors are often intertwined in real social networks, and the over-

all effect is to provide a strong support for the homophily phenomenon. In-

tuitively, the effects of selection and social influence lead to different applica-

tions in mining social network data. In particular, recommendation systems are

based on the selection/social similarity, while viral marketing [21, 55] is based

on social influence. To model these different factors, several models have been

proposed [36, 20].

Generative models for selection and influence. Holme and Newman [36]

proposed a generative model to balance the effects of selection and influence.

The idea is to initially place the M edges of the network uniformly at ran-

dom between vertex pairs, and also assign opinions to vertices uniformly at

random. With this initialization, an influence- and selection-based dynamic is

simulated. Each step of the simulation either moves an edge to lie between two

individuals whose opinions agree (selection process), or we change the opin-

ion of an individual to agree with one of their neighbors (influence process).

The results of their simulation confirmed that the selection tend to generate a

large number of small clusters, while social influence will generate large co-

herent clusters. Thus, this interesting model suggests that these two factors

both support clusters in the network, though the nature of such clusters is quite

different.

Every vertex in the Holme-Newman model [36] at a given time can only

have one opinion. This may be an oversimplification of real social networks.

To address this limitation, Crandall et al. [20] introduced multi-dimensional

opinion vectors to better model complex social networks. In particular, they

assumed that there is a set of m possible activities in the social network. Each

node v at time t has an m-dimensional vector v(t), where the ith coordinate

of v(t) represents the extent to which person v is engaging in activity i. They

use cosine similarity to compute the similarity between two people. Similar

to the Holme-Newman model, Crandall et al. also propose a more compre-

hensive generative model which samples a person’s activities based on their

own history, their neighbors’ history, and a background distribution. Cran-

dall’s model is arguably more powerful, but also requires more parameters.

Therefore more data is required in order to learn the parameters. Finally, they

applied their model and conducted a predictive modeling study on wikipedia

and live journal datasets. The benefit of the proposed similarity model are still

inconclusive.
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Quantifying influence and selection. Subsequent to the work in [20],

Scripps et al. [58] proposed the formal computational definitions of selection

and influence. We formally define selection and influence as follows:

Selection =
p(atij = 1|at−1ij = 0, 〈xt−1i , xt−1j 〉 > ε)

p(atij = 1|at−1ij = 0)

Here, the denominator is the conditional probability that an unlinked pair

will become linked and the numerator is the same probability for unlinked pairs

whose similarity exceeds the threshold ε. Values greater than one indicate the

presence of selection.

Influence =
p(〈xti, xtTj 〉 > 〈xt−1i , xt−1j 〉|at−1ij = 0, atij = 1)

p(〈xti, xtj〉 > 〈xt−1i , xt−1j 〉|at−1ij = 0)

Here, the numerator is the conditional probability that similarity increases from

time t−1 to t between two nodes that became linked at time t and the denomi-

nator is the probability that the similarity increases from time t−1 to t between

two nodes that were not linked at time t− 1. As with selection, values greater

than one indicate the presence of influence.

Based on this definition, Scripps et al. [58] present a matrix alignment

framework by incorporating the temporal information to learn the weight of

different attributes for establishing relationships between users. This can be

done by optimizing (minimizing) the following objective function:

minW

T∑

t=1

‖At −Xt−1WX(t−1)�‖2F (4.1)

where the diagonal elements of W correspond to the vector of weights of at-
tributes and ‖ · ‖F denotes the Frobenius norm. Solving the objective function

(Eq. 4.1) is equivalent to the problem of finding the weights of different at-

tributes associated with users. A distortion distance function is used to measure

the degree of influence and selection.

The above method can be used to analyze influence and selection. However,

it does not differentiate the influence from different angles (topics). Several

theories in sociology [32, 42] show that the effect of the social influence from

different angles (topics) may be different. This can be easily understood by

observing different social phenomenon for different angles. For example, col-

leagues have strong influence on one another’s work, whereas friends have

strong influence on one another’s daily life. Thus, there are several challeng-

ing problems in terms of differentiating the social influences from different

angles (topics). A number of key questions arise in this context. (a) How to

quantify the strength of those social influences? (b) How to construct a model

and estimate the model parameters for real large networks?
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Figure 4.1. Topic-level Social influence Analysis on Co-author Network.

The motivation can be further explained using Example Figure 4.1. The left

figure illustrates the input, which is a co-author network of 7 researchers, and

the topic distribution of each researcher. For example, George has the same

probability (.5) on both topics, “data mining” and “database”; The right figure

shows the output of our social influence analysis: two social influence graphs,

one for each topic, where the arrows indicate the direction and strength. We

see that Ada is the key person on “data mining”, while Eve is the key person

on “databases”. Thus, the goal is to effectively and efficiently obtain the social

influence graphs for real and large networks.

To address this problem, Tang et al. [63] propose a Topical Factor Graph

(TFG) model to formalize the topic-level social influence analysis into a unified

graphical model, and present Topical Affinity Propagation (TAP) for model

learning. In particular, the goal of the model is to simultaneously capture the

user topical distributions (or user interests), similarity between users, and net-

work structure. Figure 4.2 shows the graphical structure of the proposed model.

The TFG model has a set of observed variables {vi}Ni=1 and a set of hidden

vectors {yi}Ni=1, which correspond to the N nodes in the input network.

The hidden vector yi ∈ {1, . . . , N}T models the topic-level influence from

other nodes to node vi. Each element yzi takes the value from the set {1, . . . , N},
and represents the node that has the highest probability to influence node vi on

topic z.

For example, Figure 4.2 shows a simple example of an TFG. The observed

data consists of four nodes {v1, . . . , v4}, which have corresponding hidden

vectors Y = {y1, . . . , y4}. The edges between the hidden nodes indicate the

four social relationships in the original network (or edges in the original net-

work).
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Figure 4.2. Graphical representation of the topical factor graph model.

{v1 . . . v4} are observable nodes in the social network; {y1 . . . y4} are hidden vectors defined

on all nodes, with each element representing which node has the highest probability to

influence the corresponding node; g(.) represents a feature function defined on a node, f(.)

represents a feature function defined on an edge; and h(.) represents a global feature function

defined for each node, i.e. k ∈ {1 . . . N}.

Three types of feature functions are defined in order to capture the net-

work information: node feature function g(vi, yi, z), edge feature function

f(yi, yj , z), and global feature function h(y1, . . . , yN , k, z).
The node feature function g describes the local information on nodes (e.g.,

attributes associated with users or topical distribution of users). The edge fea-

ture function f describes the correlation between users via the edge on the

graph model, and the global feature function captures constraints defined on

the network. Based on the formulation, an objective function is defined by

maximizing the likelihood of the observation.

P (v,Y) =
1

Z

N∏

k=1

T∏

z=1

h(y1, . . . , yN , k, z)

N∏

i=1

T∏

z=1

g(vi, yi, z)
∏

ekl∈E

T∏

z=1

f(yk, yl, z) (4.2)

Here, Z is a normalizing factor; v = [v1, . . . , vN ] and Y = [y1, . . . , yN ] corre-

sponds to all observed and hidden variables, respectively. The feature function

f , g, and h can be defined in multiple different ways. For example, in the

work described in [63], f is defined with binary values in order to capture the

existence of the edge between two users; the node feature function g is de-
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fined according to the similarity of two users on a topic; and the global feature

function h is defined as a constraint.

Based on this formulation, the task of social influence is cast as that of iden-

tifying the node which has the highest probability to influence another node on

a specific topic along with the edge. This is the same as that of maximizing the

likelihood function P (v,Y).

2.2 Existential Test for Social Influence
Anagnostopoulos et al. [2] try to differentiate social influence from ho-

mophily or confounding variables by proposing the shuffle test and edge re-

versal test. The idea of shuffle test is that if social influence does not play

a role, even though an agent’s probability of activation could depend on her

friends, the timing of such an activation should be independent of the timing

of other agents. Therefore, the data distribution and characteristics will not

change even if the exact time of occurrence is shuffled around. The idea of

edge-reversal test is that other forms of social correlation (than social influ-

ence) are only based on the fact that two friends often share common charac-

teristics or are affected by the same external variables and are independent of

which of these two individuals has named the other as a friend. Thus, reversing

the edges will not change our estimate of the social correlation significantly.

On the other hand, social influence spreads in the direction specified by the

edges of the graph, and hence reversing the edges should intuitively change

the estimate of the correlation. Anagnostopoulos and et al. [2] test their mod-

els using tagging data from Flickr and validate social influence as a source of

correlation between the actions of individuals with social ties.

The proposed tests in [2] assume a static network, which is true in many real

social networks. LaFond and Neville [25] propose a different randomization

test with the use of a relational autoregression model. More specifically, they

propose to model the social network as a time-evolving graph Gt = (V,Et)
where V is the set of all nodes, Et is the set of all edges at time t. Besides Gt,

the nodes have some attribute at time t denoted by Xt. The main idea is that

selection and social influence can be differentiated through the autocorrelation

between Xt and Gt . On the one hand, the selection process can be represented

as a causal relationship from Xt−1 to Gt, which means the node attributes at

time t− 1, i.e., Xt−1, determines the social network at Gt. On the other hand,

the social influence can be represented as the causal relation from Gt−1 to

Xt, which means the social network at time t, i.e., Gt, determines the node

attributes at time t, i.e., Xt .

Aral et al. [3] propose a diffusion model for differentiating selection and

social influence. In particular, their intuition is that although the diffusion pat-

terns created by peer influence-driven contagions and homophilous diffusion
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are similar, the effects are likely to result in significantly different dynamics.

Influence-driven contagions are self-reinforcing and display rapid, exponential,

and less predictable diffusion as they evolve, whereas selection-driven diffu-

sion processes are governed by the distributions of characteristics over nodes.

In [3], they develop a matched sample estimation framework to distinguish

influence and homophily effects in dynamic networks.

Social influence in Healthcare. Christakis and Fowler studied the effect of

social influence on health related issues including alcohol consumption [56],

obesity [16], smoking [17], trouble sleep [49], loneliness [13], happiness [26].

In these studies, they use longitudinal data covering roughly 12,000 people

and correlate health status and social network structure over a 32-year period.

They found that clusters of nodes with similar health status in the network. In

another word, people tend to be more similar in health status to their friends

than in a random graph. The main focus of all these studies is to explain why

homophily of health status is present. The analysis in Christakis and Fowler ar-

gues that, even accounting for effects of selection and confounding variables,

there is significant evidence for social influence as well. The evidence sug-

gests that health status can be influenced by the health status of the neighbors.

For example, their obesity study [16] suggests that obesity may exhibit some

amount of “contagion” in the social network. Although people do not necessar-

ily catch it as the way one catches the flu, it can spread through the underlying

social network via the mechanism of social influence. Similar observations

of their study on alcohol consumption[56] discover that clusters of drinkers

and abstainers were present in the network at all time points, and the clusters

extended to 3 degrees of separation through the social network. These clus-

ters were not only due to selective formation of social ties among drinkers but

also seem to reflect social influence. Changes in the alcohol consumption be-

havior of a person’s social network had a statistically significant effect on that

person’s subsequent alcohol consumption behavior. The behaviors of immedi-

ate neighbors and co-workers were not significantly associated with a person’s

drinking behavior, but the behavior of relatives and friends was.

2.3 Influence and Actions
Influence is usually reflected in changes in social action patterns (user be-

havior) in the social network. Recent work [31, 68] has studied the problem

of learning the influence degree from historical user actions, while some other

work [58, 64] investigates how social actions evolve in the context of the net-

work, and how such actions are affected by social influence factors. Before

introducing these methods, we will first define the time-varying attribute aug-

mented networks with user actions:
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Definition 4.1 Time-varying attribute-action augmented network: The time-
varying attribute-action augmented network is denoted as Gt = (V t, Et, Xt, Y t),
wheren V t is the set of users and Et is the set of links between users at time t,
Xt represents the attribute matrix of all users in the network at time t and Y t

represents the set of actions of all users at time t.

For all actions, they define a set of action tuples as Y = (v, y, t), where

v ∈ V t, t ∈ 1, · · · , T , and y ∈ Y t.

Learning influence probabilities Goyal et al. [31] study the problem of learn-

ing the influence degrees (called probabilities) from a historic log of user ac-

tions. They present the concept of user influential probability and action in-

fluential probability. The assumption is that if user vi performs an action y at

time t and later (t′ > t) his friend vj also perform the action, then there is

an influence from vi on vj . The goal of learning influence probabilities [31]

is find a (static of dynamic) model to best capture the user influence and ac-

tion influence information in the network. They give a general user influential

probability and action influential probability definitions as follows:

User Influence Probability

infl(vi) =
|{y|∃v,Δt : prop(a, vi, vj ,Δt) ∧ 0 ≤ Δt|

Yvi

Action Influence Probability

infl(y) =
|{vi|∃vj ,Δt : prop(a, vj , vi,Δt) ∧ 0 ≤ Δt}|

number of users performing y

where Δt = tj − ti represents the difference between the time when user vj
performing the action and the time when user vi performing the action, given

eij = 1; prop(a, vi, vj ,Δt) represents the action propagation score.

Goyal et al. [31] propose three methods in order to approximate the action

propagation prop(a, vi, vj ,Δt): 1) static model (based on Bernoulli distribu-

tion, Jaccard Index, and Partial Credits), 2) Continuous Time (CT) Model, and

3) Discrete Time (DT) Model. The model can be learned with a two-stage algo-

rithm. Finally, the learned influence probabilities have been applied to action

prediction and the experiments show that the Continuous Time (CT) model can

achieve a better performance than other models on the Flickr social network

with the action of “joining a group”.

Social action tracking The main advantage of methods proposed in [31] is

that the model is scalable and it is effective for a large social network. One

limitation is that it ignores the correlation between user actions, and it also

does not consider the attributes associated with each user node.
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Figure 4.3. Social influence. The x-axis stands for the percentage of one’s friends who per-

form an action at t − 1 and the y-axis represents the likelihood that the user also performs the

action at t.

To address this problem, Tan et al. [62] propose the social action tracking

problem. This problem discusses how to simultaneously model the social net-

work structure, user attributes and user actions over time. They perform an

analysis on three real social networks: Twitter1, Flickr2, and Arnetminer3. On

Twitter, the action is defined as whether a user discusses the topic “Haiti Earth-

quake” on his microblogs (tweets). On Flickr, the action is defined as whether

a user adds a photo to his favorite list. In the case of Arnetminer, the action

is defined as whether a researcher publishes a paper on a specific conference

(or journal). The analysis includes three aspects: (1) social influence; (2) time-

dependency of user actions; (3) action correlation between users. Figure 4.3

[62] shows the effect of social influence. We see that with the percentage of

one’s friends performing an action increasing, the likelihood that the user also

performs the action is increased. For example, when the percentage of one’s

friends discussing “Haiti Earthquake” on their tweets increases the likelihood

that the user herself posts tweets about “Haiti Earthquake” is also increased

significantly. Figure 4.4 illustrates how a user’s action is dependent on his his-

toric behaviors. It can be seen that a strong time-dependency exists for users’

actions. For instance, on Twitter, averagely users who posted tweets about

“Haiti Earthquake” will have a much higher probability (+20 to 40%) to post

tweets on this topic than those who never discussed this topic on their blogs.

Figure 4.5 shows the correlation between users’ actions at the same timestamp.

An interesting phenomenon is that friends may perform an action at the same

time. For example, on Twitter, two friends have a higher probability (+19.6%)

to discuss the “Haiti Earthquake” than two users randomly chosen from the

network.

In order to model and track social influence and user actions, Tan et al.

[62] propose a Noise-Tolerant Time-varying Factor Graph Model (NTT-FGM),

which is based on three intuitions:

1http://www.twitter.com, a microblogging system.
2http://www.flickr.com, a photo sharing system.
3http://arnetminer.org, an academic search system.
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Figure 4.4. Time-dependency of user actions. The x-axis stands for different timestamps. “de-

pendent” denotes the likelihood that a user performs an action which was previously performed

by herself; “average” represents the likelihood that a user performs the action.
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Figure 4.5. Action correlation. The x-axis stands for different time windows. “friend” denotes

the likelihood that two friends perform an action together; “random” represents the likelihood

that two random users perform the action together.

1 User actions at time t are influenced by their friends’ historic actions

(time < t).

2 User actions at time t are usually dependent on their previous actions.

3 User actions at a same time t have a (strong) correlation.

Moreover, the discrete variable yti only models the user action at a coarse

level, but cannot describe the intention of the user to perform an action. Di-

rectly modeling the social action Y would inevitably introduce noise into the

model. A continuous variable for modeling the action bias is favorable. Thus,

the concept of latent action state is presented:

Definition 4.2 Latent action state: For each user action yti , we define a
(continuous) latent state zti ∈ [0, 1], which corresponds to a combination of
the observed action yi and a possible bias, to describe the actual intensity of
the intention of the user to perform the action.
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Figure 4.6. Graphical representation of the NTT-FGM model. Each circle stands for a user’s

latent action state zti at time t in the network, which is used to characterize the intention degree

of the user to perform the action; the latent state is associated with the action yt
i , a vector of

attributes xt
i , and depends on friends’ historic actions zt−1

∼vi and correlates with friends’ actions

zt∼vi at time t; g(.) denotes a factor function to represent the friends’ influence on a user’s

action; hi(.) represents a factor defined on user vi’s attributes; and hij(.) represents a factor to

capture the correlation between users’ actions.

Figure 4.6 shows the graphical structure of the NTT-FGM model. An action

of user vi at time t, i.e., yti is modeled by using a (continuous) latent action

state zti , which is dependent on friends’ historic actions zt−1∼vi (where ∼ vi rep-

resents friends of user vi in the network), users’ action correlation zt∼vi , and

users’ attributes xti. Specifically, in the NTT-FGM model, each discrete action

is mapped into the latent state space and the action bias is modeled using a

factor function. For example, for yti = 1, a small value of its corresponding zti
suggests that a user vi has a low intention to perform the action, thus a large

action bias |yti − zti |. Next, influence between users is modeled using the la-

tent states based on the same assumption: latent states of user actions at time

t are conditionally independent of all the previous states given the latent states

at time t − 1. Finally, the correlation between actions is also modeled in the

latent state space. A Markov random field is defined to model the dependency

(correlation) among the continuous latent states.

Thus, given a series of attribute augmented networks G = {Gt = (V t, Et, Xt, Y t)}, t ∈
{1, · · · , T} and V = V 1 ∪ V 2 ∪ . . . ∪ V T , |V | = N , the joint distribution over the

actions Y given G can be written as follows:

p(Y|G) =

T∏

t=1

N∏

i=1

f(yti |zti)f(zti |zt−1∼vi)f(z
t
i |zt∼vi , xti) (4.3)

where notation∼ vi represents neighbors of vi in the social network. The joint

probability has three types of factor functions:

Action bias factor: f(yti |zti) represents the posterior probability of user

vi’s action yi at time t given the continuous latent state zti ;
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Influence factor: f(zti |zt−1∼vi) reflects friends’ influence on user vi’s action

at time t;

Correlation factor: f(zti |zt∼vi , xti) denotes the correlation between users’

action at time t.

The three factors can be instantiated in different ways, reflecting the prior

knowledge for different applications. Finally, in the work [62], all the three

factor function are defined by quadratic functions due to two reasons: the

quadratic function is integrable and it offer the possibility to design an exact

solution to solve the objective function (joint probability). Finally, the model

is learned using an EM-style algorithm and for scale up to large-scale data sets,

a distributed learning algorithm has been designed based on the MPI (Message

Passing Interface).

Mixture model for user actions Manavoglu et al. [47] propose a mixture-

model based approach for learning individualized behavior (action) models for

Web users where a behavior model is a probabilistic model describing which

actions the user will perform in the future.

They first build a global behavior model for the entire population and then

personalize this global model for the existing users by assigning each user indi-

vidual component weights for the mixture model, and then use these individual

weights to group the users into behavior model clusters. Finally they show that

the clusters generated in this manner are interpretable and able to represent

dominant behavior patterns.

They claim that they are able to eliminate one of the biggest problems of

personalization, which is the lack of sufficient information about each indi-

vidual. This is achieved by starting with a global model and optimizing the

weights for each individual with respect to the amount of data available for

him or her.

Specifically, for each action in a user session, the history H(U) is de-

fined by the ordered sequence of actions, which have been observed so far.

Their behavior model for individual U is a model, that predicts the next action

Anext given the history H(U). Therefore the problem is to infer this model,

P (Anext|H(U), Data), for each individual given the training data. For exam-

ple, the Markov model is often used for such problems.

In the first stage, they use a global mixture model to capture the ordered

sequence of actions for an individual U as follows:

P (Anext|H(U), Data) =

Nc∑

k=1

αkP (Anext|H(U), Data, k) (4.4)
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where
Nc∑
k=1

αk = 1, αk is the prior probability of cluster k, and P (Anext|H(U), Data, k)

is the distribution for the k-th component. For the global model, the different

αk take on the same values across all the users.

There are two ways to model the cluster-specific distributions: a first or-

der Markov model and the maximum entropy model. Regarding the Markov

model, we can use the following way to model the k-th cluster distribution

P (Anext|H(U), Data, k) ∝ θ0,k

|H(U)|∏

h=1

θh→(h+1),k (4.5)

where θ0,k is the probability of observing H(U)0 as the first action in the his-

tory, and θh→(h+1),k is the probability of observing a transition from action

number h to action number h+ 1 in the history.

In the second stage, we personalize the mixture model by using individual

cluster probabilities, αU,k’s, for each user as follows:

PU (A
next|H(U), Data) =

Nc∑

k=1

αU,kP (Anext|H(U), Data, k) (4.6)

where
Nc∑
k=1

αU,k = 1. The component distribution, P (Anext|H(U), Data, k),

is the same as in global mixture model: either maximum entropy or Markov

model, which is fixed across all users.

An EM-style algorithm is utilized to estimate the model parameters.

2.4 Influence and Interaction
Besides the attribute and user actions, influence can be also reflected by the

interactions between users. Typically, online communities contain ancillary

interaction information about users. For example, a Facebook user has a Wall

page, where her friends can post messages. Based on the messages posted on

the Wall, one can infer which friends are close and which are acquaintances

only. Similarly, one can use follower and following members on Twitter to

infer the strength of a relationship.

Xiang et al [68] propose a latent variable model to infer relationship strength

based on profile similarity and interaction activity, with the goal of automat-

ically distinguishing strong relation- ships from weak ones. The model at-

tempts to represent the intrinsic causality of social interactions via statistical

dependencies. It distinguishes interaction activity from user profile data, and

integrates two types of information by considering the relationship strength to
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Figure 4.7. From blog graph to influence graph

be the hidden effect of user profile similarities, as well as the hidden cause of

the interactions between users.

The input to the problem can be considered an attribute-augmented network

G = (V,E,X) with interaction information mij ⊂ M between users, where

mij is a set of different interactions between users vi and vj . The model also

uses continuous latent variable z, but for each link rather than action. The

latent variable can be further treated as the strength of the social influence.

There are some methods aiming to model social influence using a link anal-

ysis method. The basic idea is similar to the concept of random walks. Java et

al. [39] employ such a method to model the influence in online social networks.

Figure 4.7 shows the conversion of a blog network into an influence graph.

A link from u to v indicates that u is influenced by v. The edges in the influence

graph are the reverse of the blog graph to indicate this influence. Multiple

edges indicate stronger influence and are weighted higher. In the influence

graph, the direction of edges is opposite as the blog graph. And the influence

weight can be calculated

Wu,v =
Cu,v

dv

Based on the influence graph, they proposed several typical applications, such

as spam detection and node selection. The classical PageRank and HITS algo-

rithms can be also employed here.

2.4.1 Influence and Friendship Drift. Sarkar et al. [57] study the

problem of friendships drifting over time. They explore two aspects of social

network modeling by the use of a latent space model. First, they generalize a

static model of relationships into a dynamic model that accounts for friendships

drifting over time. Second, they show how to make it tractable to learn such

models from data, even as the number of entities n gets large. The generalized

model associates each entity with a point in p-dimensional Euclidean latent
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space. The points can move as time progresses but large moves in latent space

are improbable. Observed links between entities are more likely if the entities

are close in latent space. They show how to make such a model tractable (sub-

quadratic in the number of entities) by the use of the following characteristics

(a) appropriate kernel functions for similarity in latent space; (b) the use of low

dimensional KD-trees; (c) a new efficient dynamic adaptation of multidimen-

sional scaling for a first pass of approximate projection of entities into latent

space; and (d) an efficient conjugate gradient update rule for non-linear local

optimization in which amortized time per entity during an update is O(logn).

They use both synthetic and real data on up to 11,000 entities which indicate

near-linear scaling in computation time and improved performance over four

alternative approaches. We also illustrate the system operating on twelve years

of NIPS co-authorship data.

2.4.2 Influence and Autocorrelation. Autocorrelation refers to corre-

lation between values of the same variable (e.g., action or attribute) associated

with linked nodes (users) [51]. More formally, autocorrelation in social net-

works, and in particular for influence analysis, can be defined with respect to a

set of linked users eij = 1, eij ∈ E and an attribute matrix X associated with

these uses, as the correlation between the values of X on these instance pairs.

Neville et al. provide an overview of research on autocorrelation in a num-

ber of fields with an emphasis on implications for relational learning, and out-

line a number of challenges and opportunities for model learning and inference

[51]. Social phenomena such as social influence, diffusion processes, and the

principle of homophily give rise to autocorrelated observations as well, through

their influence on social interactions that govern the data generation process.

Another related topic is referred to as collective behavior in social networks.

Essentially, collective behavior modeling is to understand the behavior corre-

lation in the social network. For this purpose, much work has been done. For

example, Tang and Liu [65] aim to predict collective behaviors in social media.

In particular, they try to answer the question: given information about some in-

dividuals, how can we infer the behavior of unobserved individuals in the same

network?

They attempt to utilize the behavior correlation presented in a social network

to predict the collective behavior in social media. The input of their prob-

lem is the same as Definition 4.1. They propose a framework called SocDim
[64], which is composed of two steps, which are those of social dimension

extraction and discriminative learning respectively. In the instantiation of the

framework SocDim, modularity maximization is adopted to extract social di-

mensions. There are several concerns about the scalability of SocDim:

The social dimensions extracted according to modularity maximization

are dense.
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The modularity maximization requires the computation of the top eigen-

vectors of a modularity matrix which will become a daunting task when

the network scales to millions of node.

Networks in social media tend to evolve which entails efficient update

of the model for collective behavior prediction.

2.4.3 Influence and Grouping Behavior. Grouping behavior, e.g.,

user’s participation behavior into a forum, is an important action in the social

network. The point of influence and grouping behavior is to study how differ-

ent factors influence the dynamics of grouping behaviors.

Shi et al. investigated the user participation behavior in diverse online fo-

rums [59]. In that paper, they are mainly focused on three central questions:

1 What are the factors in online forums that potentially influence people’s

behavior in joining communities and what is the corresponding impact?

2 What are the relationships between these factors, i.e. which ones are

more effective in predicting the user joining behavior, and which ones

carry supplementary information?

3 What are the similarities and differences of user grouping behavior in

forums of different types (such as news forums versus technology fo-

rums)?

In order to answer the first question, they analyze four features that can

usually be obtained from a forum dataset:

1 Friends of Reply Relationship. Use this feature to describe how users are

influenced by the numbers of neighbors with whom they have ever had

any reply relationship.

2 Community Sizes. Use community size as the measurement to quantify

the ‘popularity’ of information.

3 Average Ratings of Top Posts. Aside from the popularity of information,

we are also interested in how the authority or interestingness of informa-

tion impacts user behavior.

4 Similarities of Users. This is the only feature with dependency: if two

users are ‘similar’ in a certain way, what is the correlation of the sets of

communities they join?

Their first discovery is that, despite the relative randomness, the diffusion

curve of influence from users of reply relationships has very similar diffu-

sion patterns. However, the reasons that people are linked together are very
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different. They also investigate the influence of the features associated with

communities, which include the size of communities and the authority or the

interestingness of the information in the communities. They find that their cor-

responding information diffusion curves show some strong regularities of user

joining behavior as well, and these curves are very different from those of re-

ply relationships. Furthermore, we analyze the effects of similarity of users

on the communities they join, and find two users who communicate more fre-

quently or have more common friends are more likely to be in the same set of

communities.

In order to answer the second question, we construct a bipartite graph,

whose two sets of nodes are users and communities, to encompass all the fea-

tures and their relationships in this problem. Based on the bipartite graph, we

build a bipartite Markov Random Field (BiMRF) model to quantitatively eval-

uate how much each feature affects the grouping behavior in online forums, as

well as their relationships with each other. BiMRF is a Markov random graph

with edges and two-stars as its configuration, and incorporates the node-level

features we have described as in a social selection model. The most significant

advantage of using the BiMRF model is that it can explicitly incorporate the

dependency between different users’ joining behavior, i.e., how a user’s join-

ing behavior is affected by her friends’ joining behavior. The results of this

quantitative analysis shows that different features have different effectiveness

of prediction in news forums versus technology forums.

Backstrom et al. [4] also explore a large corpus of thriving online commu-

nities. These groups vary widely in size, moderation and privacy, and cover

an equally diverse set of subject matter. They present a number of descriptive

statistics of these groups. Using metadata from groups, members, and indi-

vidual messages, they identify users who post and are replied-to frequently by

multiple group members. They classify these high-engagement users based on

the longevity of their engagements. Their results show that users who will go

on to become long-lived, highly-engaged user experience significantly better

treatment than other users from the moment they join the group, well before

there is an opportunity for them to develop a long-standing relationship with

members of the group. They also present a simple model explaining long-term

heavy engagement as a combination of user-dependent and group dependent

factors. Using this model as an analytical tool, they show that properties of the

user alone are sufficient to explain 95% of all memberships, but introducing a

small amount of group-specific information dramatically improves our ability

to model users belonging to multiple groups.
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3. Influence Maximization in Viral Marketing
Social influence analysis has various real-world applications. Influence max-

imization in viral marketing is an example of such an important application.

In this section, we will introduce the problem of influence maximization and

review recent research progress. We will also introduce relevant work on rep-

resentative user and expert discovery.

3.1 Influence Maximization
The problem of influence maximization can be traced back to the research

on “word-of-mouth” and “viral marketing” [6, 11, 21, 38, 46, 55]. The prob-

lem of often motivated by the determination of potential customers for mar-

keting purposes. The goal is to minimize marketing cost and more generally

to maximize profit. For example, a company may wish to market a new prod-

uct through the natural “word of mouth” effect arising from the interactions

in a social network. The goal is to get a small number of influential users to

adopt the product, and subsequently trigger a large cascade of further adop-

tions. In order to achieve this goal, we need a measure to quantify the intrinsic

characteristics of the user (e.g., the expected profit from the user) and the user

network value (e.g., the expected profit from users that may be influenced by

the user). Previously, the problem has mainly been studied in marketing de-

cision or business management. Domingos and Richardson [21] formulated

this problem as a ranking problem using a Markov random field model. They

further present an efficient algorithm to learn the model [55]. However, the

method models the marketing decision process in a “black box”. How users

influence each other once a set of users have been marketed (selected), how

they will influence their neighbors and how the diffusion process will continue

are problems which are still not fully solved. Kempe et al. [41] took the first

step to formally define the process in two diffusion models and theoretically

proved that the optimization problem of selecting the most influential nodes

in the two models is NP-hard. They have developed an algorithm to solve the

models with approximation guarantees. The efficiency and scalability of the

algorithm has been further improved in recent years [14, 15]. We will skip the

work in marketing or business and focus on the formulation of the problem and

model learning.

3.1.1 Diffusion Influence Model. There are quite a few classical mod-

els of this problem. Here, we review some of them. For ease in explanation,

we associate each user with a status: active or inactive. Then, the status of the

chosen set of users to market (also referred to as “seed nodes”) is viewed as

active, while the other users are viewed as inactive. The problem of influence

maximization is studied with the use of this status-based dynamic. Initially
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all users are considered inactive. Then, the chosen users are activated, who

may further influence their friends (neighbor nodes) to be active as well. The

simplest model is to quantify the influence of each node with some heuristics.

Some examples are as follows:

1) High-degree heuristic. It chooses the seed nodes according to their degree

dv. The strategy is very simple but also natural because the nodes with more

neighbors would arguably tend to impose more influence upon its direct neigh-

bors. This consideration of high-degree nodes is also known in the sociology

literature as “degree centrality”.

2) Low-distance Heuristic. Another commonly used influence measure in soci-

ology is distance centrality, which considers the nodes with the shortest paths

to other nodes as be seed nodes. This strategy is based on the intuition that

individuals are more likely to be influenced by those who are closely related to

them [26].

3) Degree discount heuristic. The general idea of this approach is that if u has

been selected as a seed, then when considering selecting v as a new seed based

on its degree, we should not count the edge −→vu towards its degree. This is re-

ferred to as SingleDiscount. More specifically, for a node v with dv neighbors

of which tv are selected as seeds already, we should discount v’s degree by

2tv + (dv − tv) tvp.

4) Linear threshold model. In this family of models, whether a given node

v will be active can be based on an arbitrary monotone function of the set of

neighbors of v that are already active. We associate a monotone threshold

function fv which maps subsets of v’s neighbors to real numbers in [0, 1].
Then, each node v is given a threshold θv, and v will turn active in step t
iffv(S) > θv, where S is the set of neighbors of v that are active in step t− 1.

Specifically, in [41] the threshold function fv(S) is instantiated as fv (S) =∑
u∈S bv.u where bv.u can be seen as a fixed weight, subject to the following

constraint: ∑

uneighborsofv

bv,u ≤ 1

5) General cascade model. We first define an incremental function pv(u, S) ∈
[0, 1] as the success probability of user u activating user v, i.e., user u tries

to activate v and finally succeeds, where S is those of v’s neighbors that have

already attempted but failed to make v active. A special version of this model

used in [41] is called Independent Cascade Model in which pv(u, S) is a con-

stant, meaning that whether v is to be active does not depend on the order v’s

neighbors try to activate it. And a special case of Independent Cascade Model

is weighted cascade model, where each edge from node u to v is assigned

probability 1/dv of activating v.

One challenging problem in the diffusion influence model is the evaluation

of its effectiveness and efficiency. From the theoretical perspective, Kempe
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et al. [41] prove that the optimization of their two proposed models, i.e., lin-

ear threshold model and general cascade model is NP-hard. Their proposed

approximation algorithms can also theoretically guarantee that the influence

spread is within (1− 1/e) of the optimal influence spread. From an empirical

perspective, Kempe et al. [41] show that their proposed models can outperform

the traditional heuristics in terms of the maximization of social influences. Re-

cent research mainly focuses on the improvement of the efficiency of the al-

gorithm. For example, Leskovec et al. [44] present an optimization strategy

referred to as “Cost-Effective Lazy Forward” or “CELF”, which could accel-

erate the procedure by up to 700 times with no worse effectiveness. Chen et al.

[14] further improve the efficiency by employing a new heuristics and in [15]

they extend the algorithm to handle large-scale data sets. Another problem is

the evaluation of the effectiveness of the models for influence maximization.

Some recent work has been proposed in [21] and [55], though these methods

are designed only for small data sets. It is still a challenging problem to extend

these methods to large data sets.

3.1.2 Learning to Predict Customers. Viral Marketing aims to in-

crease brand awareness and marketer revenue with the help of social networks

and social influence. Direct marketing is an important application, which at-

tempts to market only to a select set of potentially profitable customers. Previ-

ously, the problem was mainly addressed by constructing a model that predicts

a customer’s response from their past buying behavior and any available demo-

graphic information [45]. When applied successfully, this approach can signif-

icantly increase profits [53]. One limitation of the approach is that it treats

each customer independently of other customers in terms of their actions. In

reality, a person’s decision to buy a product is often influenced by their friends

and acquaintances. It is not desirable to ignore such a networking influence,

because it can lead to severely suboptimal decisions.

We will first introduce a model that tries to combine the network value with

customer intrinsic value [21]. Here, the intrinsic value represents attributes

(e.g., customer behavior history) that are directly associated with a customer.

Such attributes might affect the likelihood of the customer to buy the prod-

uct, while the network value represents the social network (e.g., customers’

friends), which may influence the customer’s buying decision.

The basic idea here is to formalize the social network as Markov random

fields, where each customer’s probability of buying is modeled as a function of

both the intrinsic desirability of the product for the customer and the influence

of other customers. Formally, the input can be defined as: consider a social net-

work G = (V,E), with n potential customers and their relationships recorded

in E, and let xi indicate the attributes associated with each customer vi. We

assign a boolean variable yi to each customer that takes the value 1 if the cus-
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tomer vi buys the product being marketed, and 0 otherwise. Further let NBi

be the neighbors of vi in the social network and zi be a variable representing

the marketing action that is taken for customer vi. zi can boolean variable, with

zi = 1 if the customer is selected to market (e.g., be offered a free product),

and zi = 0 otherwise. Alternatively, zi could be a continuous variable indicat-

ing a discount offered to the customer. Given this, we can define the marketing

process for customer vi in a Markov random field as follows:

P (yi|yNBi , xi, z) =
∑

C(NBi) P (yi, yNBi |xi, z)
=

∑
C(NBi) P (yi|yNBi , xi, z)P (yNBi |X, z) (4.7)

where C(NBi) is the set of all possible configuration of the neighbors of vi;
and X represent attributes of all customers. To estimate P (yNBi |X, z), Domin-

gos and Richardson [21] employ the maximum entropy estimation to approxi-

mate the probability based on the independent assumption, i.e.,

P (yNBi |X, z) =
∏

vj∈NBi

P (yj |X, z) (4.8)

The marketing action z is modeled as a Boolean variable. The cost of mar-

keting to a customer is further considered in the Markov model. Let r0 be

the revenue from selling the product to the customer if no marketing action is

performed, and r1 be the revenue if marketing is performed. The cost can be

considered as offering a discount to the marketed customer. Thus the expected

lift in profit from marketing to customer vi in isolation (without influence) can

be defined as follows:

ELPi
1(Y, z) = r1P (yi = 1|Y, fi1(M))− r0P (yi = 1|Y, fi0(z))− c (4.9)

where fi
1(zi) be the result of setting zi to 1 and leaving the rest of z unchanged,

and similarly for f0
i (zi).

Thus the global lift in profit for a particular choice z:

ELPi
1(Y, z) =

n∑

i=1

[riP (Xi = 1|Y, z)− r0P (Xi = 1|Y, z0)− ci]

A customer’s total value is the global lift in profit from marketing to him

ELP (Y, fi
1(zi))− ELP (Y, fi

0(zi))
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and his network value is the difference between his total and intrinsic values.

The model can be also adjusted to a continuous version with no qualitative

difference.

In marketing context, the goal for modeling the value of a customer is to find

the z that can maximize the lift in profit. Richardson and Domingos propose

several approximation algorithms in [21] to solve this problem. And they make

further contribution to this field in their later paper [55] by showing an tractable

way to calculate the optimal M by directly solving the equation:

rΔi(Y )
dΔPi(z, Y )

dz
=

dc(z)

dz

where z denotes the market action. The network effect Δi (Y ) =
n∑

j=1
wjiΔj (Y )

is the total increase in probability of purchasing in the network (including yi)
that results from a unit change in P0(yi) when wji indicates how much vj can

influence vi. And the ΔPi (z, Y ) = βi [P0 (Xi = 1|Y,Mi = z)− P0 (Xi = 1|Y,Mi = 0)]
denotes the immediate change in customer vi’s probability of purchasing when

he is marketed to with marketing action z.

Some other work aims to find the optimal marketing strategy by directly

maximizing the revenue rather than social influence. Work [34] makes some

investigation in this field. The basic idea is as follows: since a customer who

owns a product can have an impact on potential buyers, it is important to de-

cide the sequence of marketing, as well as the price to offer the buyers. Thus a

simple marketing strategy, called influence-and-exploit strategy, is introduced,

which basically consists of an influence step and an exploit step. In the influ-

ence step, the seller starts by giving some products for free to some specially

chosen customers (hopefully the most influential ones), and in the exploit step,

the seller try to sell products to the remaining customers with a fixed optimal

price. Hartline et al. [34] also prove that the influence-and-exploit method

works as a reasonable approximation of the NP-hard problem of finding the

optimal marketing strategy.

3.1.3 Maximizing the Spread of Influence. Kempe et al. [41] propose

the linear threshold model and the independent cascade model. The optimal

solution to either model is NP-hard. The solution here is to use a submodular

function to approximate the influence function. Submodular functions have a

number of very nice tractability properties in terms of the design of approx-

imation algorithms. One important property that is used in the approach is

as follows. Given a function f that is submodular, taking only non-negative

values, then we have

f(S ∪ {v}) ≥ f(S)
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for all elements v and sets S. Thus, the problem can be transformed into

finding a k-element set S for which f(S) is maximized. The problem, can be

solved using a greedy hill-climbing algorithm which approximates the optimal

solution within a factor of (1− 1/e). The following theorem formally defines

the problem.

Theorem 4.3 [19, 50] For a non-negative, monotone submodular function
f , let S be a set of size k obtained by selecting elements one at a time, each time
choosing an element that provides the largest marginal increase in the function
value. Let S� be a set that maximizes the value of f over all k-element sets.
Then f(S) ≥ (1 − 1/e) · f(S�); in other words, S provides a (1 − 1/e)-
approximation.

The model can be further extended to assume that each node v has an asso-

ciated non-negative weight wv, which can be used to capture the human prior

knowledge to the task at hand, e.g., how important it is that v be activated in

the final outcome.

To adapt the model to a more realistic scenario, we may have a number of

m of different marketing actions Mi available, each of which may affect some

subset of nodes by increasing their probabilities of becoming active; however,

different nodes may respond to marketing actions in different ways. Thus a

more general model can considered [41]. More specifically, we can intro-

duce investment ti for each marketing action Mi. Thus the goal is to reach

a maximum profit lift while the total investments do not exceed the budget.

A marketing strategy is then an m-dimensional vector t of investments. The

probability that node v will become active is determined by the strategy and

denoted by hv(t). By assuming that the function is non-decreasing and satisfies

the “diminishing returns” property for all t ≥ t′ and a ≥ 0:

hv(t+ a)− hv(t) ≤ hv(t
′ + a)− hv(t

′) (4.10)

Satisfying the above inequality corresponds to an interesting marketing in-

tuition: the marketing action would be more effective when the targeted indi-

vidual is less “marketing-saturated” at that point. Finally, the objective of the

model is to maximize the expected size of the final active set. Given an initial

set A and let the expected size of the final active set is σ(A), then the expected

revenue of the marketing strategy t can be defined as:

g(t) =
∑

A⊂V
σ(A) ·

∏

v∈A
hv(t) ·

∏

u∈V−A
(1− hu(t)) (4.11)

We note that if A be the active set of nodes, then the inactive set of nodes is

denoted by V −A. We can use the submodular property in order to optimize the

function corresponding to the revenue of the marketing strategy. We can design
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a greedy hill-climbing algorithm, which can still guarantee an approximation

within a constant factor. A proof of this result may be found in [41].

3.2 Other Applications
3.2.1 Online Advertising. Social influence analysis techniques can

also be leveraged for online advertising. For example, the work in [54] pro-

poses methods for identifying brand-specific audiences without utilizing the

user private information. The proposed method takes advantage of the no-

tion of “seed nodes”, which can specifically indicate the users (or browsers)

who exhibit brand affinity. Yet another term “brand proximity” is a distance

measure between candidate nodes and the seed nodes. For each browser bi
we use

−→
φ bi = [φ1

bi , φ
2
bi , ..., φ

P
bi ] to denote the effect of the P proximity

measures. Then we can discover the best audiences for marketing by ranking

the candidate nodes bi with respect to
−→
φ bi based on some monotonic function

score(bi) = fi(
−→
φ bi ·

−→
I q). The selection vector

−→
I q = [0, ..., 1, ..., 0] holds a 1

in the q-th row. The proximity measures P can be chosen from a pool. Finally,

the authors show that the quasi-social network extracted from the data corre-

sponds well with a real social network. This means that the modeled “friends”

on the virtual network accurately reflect the relationships between friends or

relatives in the real world.

Another tractable approach for viral marketing is through frequent pattern

mining, which is studied by Goyal et al. in [30].Their research focuses on the

actions performed by the users, under the assumption that users can see their

friends’ actions. The authors formally define leaders in a social network, and

introduce an efficient algorithm aiming at discovering the leaders. The ba-

sic formation of the problem is that actions take place in different time steps,

and the actions which come up later could be influenced by the earlier taken

actions. This is called the propagation of influence. The notion of leaders

corresponds to people who can influence a sufficient number of people in the

network with their actions for a long enough period of time. Aside from the

normal leaders, there are other kinds of users who only influence a smaller

subset of people. These users are called tribe leaders. The algorithm for find-

ing leaders in a social network makes use of action logs, which sorts actions

chronologically.

3.2.2 Influential Blog Discovery. In the web 2.0 era, people spend a

significant amount of time on user-generated content web sites, a classic exam-

ple of which are blog sites. People form an online social network by visiting

other users’ blog posts. Some of the blog users bring in new information, ideas,

and opinions, and disseminate them down to the masses. This influences the
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opinions and decisions of others by word of mouth. This set of users are called

opinion leaders.

In order to tackle this problem, we can first define the following properties

for each blogger:

Recognition: An influential blog post is recognized by many people.

This generally means that there are a lot of inlinks to the article.

Activity generation: Blogs often have comments associated with them.

A large number of comments indicates that the contents of the article

encourages discussion. This indicates that the blog is influential.

Novelty: Normally a novel blog is one that with less outgoing links.

Eloquence: Longer articles posted on blog sites tend to be more elo-

quent, and can thus be more influential.

The work in [1] presents a model which takes advantages of the above four

properties to describe the influence flow in the influence-graph consisting of

all the blogger pages. Basically, the influence flow probability is defined as

follows:

InfluenceF low(p) = win

|ι|∑

m=1

I(pm)− wout

|θ|∑

n=1

I(pn) (4.12)

win and wout is the weight to describe the contribution of incoming and out-

going links. Finally, the influence of a blog is defined as:

I(p) = w(λ)× (wcomγp + InfluenceF low(p)) (4.13)

where wcom denotes the weight that can be used to regulate the contribution of

the number of comments (γp) towards the influence of the blog post p.

In another work [61], Song et al. associate a hidden node ve to each node v
to represent the source of the novel information in blog v. More specifically,

let Out(v) denote the set of blogs that v links to. The information novelty

contribution of entry ve is then calculated as:

Nov (ve|Out(ve)) = min
Oe∈Out(ve)

Nov(ve|Oe) (4.14)

The information novelty provided by the hidden node of blog v is measured

as the average of the novelty scores of the entries it contains.

Nov (v|Out(v)) =

∑
ve∈V

(Nov (ve|Out(ve)))

card (Set (ve))
(4.15)
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where card(·) denotes total number of entries of interest in blog v. Then, the

problem can be formulated as solving the InfluenceRank IR.

IRT (I−(1−β)αW −(1−β)αa ·eT ) = (1−β)(1−α)eT +β.NovT (4.16)

with IRT · e = 1.
As the InfluenceRank can be fitted in a random walk framework, α is the

probability that the random walk follows a link. β reflects how significant the

novelty is to the opinion leaders we expect to detect. e is the n-vector of all

ones and a is the vector with components ai = 1 if i-th row of W corresponds to

a dangling node, and 0, otherwise, where W is the normalized adjacent matrix.

4. Conclusion
Social influence analysis aims at qualitatively and quantitatively measuring

the influence of one person on others. As social networking becomes more

prevalent in the activities of millions of people on a day-to-day basis, both

research study and practical applications on social influence will continue to

grow. Furthermore, the size of the networks on which the underlying applica-

tions need to be used also continues to grow over time. Therefore, effective

and efficient social influence methods are in high demand.

In this chapter, we focus on the computational aspects of social influence

analysis and describe different methods and algorithms for calculating social

influence related measures. First, we cover the basic statistical measure of

networks such as centrality, closeness and betweenness; second, we present the

social influence and selection models. These covers the fundamental concepts

on influence; third, we present the influence maximization and its application

for viral marketing.

In the future, an important and challenging research area is to develop effi-

cient, effective and quantifiable social influence mechanisms to enable various

applications in social networks and social media. This area lies in the inter-

section of computer science, sociology, and physics. In particular, scalable

and parallel data mining algorithms, and scalable database and web technol-

ogy have been changing how sociologists approach this problem. Instead of

building conceptual models and conducting small scale simulations and user

studies, more and more people now rely on large-scale data mining algorithms

to analyze social network data. This provides more realistic results for large-

scale applications. This chapter provides an introduction of the problem space

in social influence analysis. The area is still in its infancy, and we anticipate

that more techniques will be developed for this problem in the future.
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