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Abstract—Social influence has attracted tremendous attention
from both academic and industrial communities due to the rapid
development of online social networks. While most research has
been focused on the direct influence between peers, learning
cascaded indirect influence has not been previously studied. In
this paper, we formulate the concept of cascade indirect influence
based on the Independent Cascade model and then propose
a novel online learning algorithm for learning the cascaded
influence in the partial monitoring setting. We propose two bandit
algorithms E-EXP3 and RE-EXP3 to address this problem. We
theoretically prove that E-EXP3 has a cumulative regret bound
of O(v/T) over T, the number of time stamps. We will also
show that RE-EXP3, a relaxed version of E-EXP3, achieves
a better performance in practice. We compare the proposed
algorithms with three baseline methods on both synthetic and
real networks (Weibo and AMiner). Our experimental results
show that RE-EXP3 converges 100x faster than E-EXP3. Both
of them significantly outperform the alternative methods in terms
of normalized regret. Finally, we apply the learned cascaded
influence to help behavior prediction and experiments show
that our proposed algorithms can help achieve a significant
improvement (10-15% by accuracy) for behavior prediction.

I. INTRODUCTION

Social influence is the phenomenon that people’s opinions,
emotions or behaviors are affected by others. It can affect
people’s daily life in different aspects [8], [1]. The recent
success of viral marketing is a strong evidence of social
influence [12], [22], [17]. Much research has been conducted
about social influence including pairwise influence [14], [23],
topic influence [25], community influence [7], [26] and local
influence [28], [30]. However, most of the previous works
focused on studying the influence between neighbors in the
social network and very little research has been conducted for
learning indirect influence between users who are not directly
connected in the social network.

In this paper, we aim to conduct a systematical study for
learning cascaded indirect influence. In particular, we study
this problem in the partial monitoring setting—due to the fact
that interactions between users who are not connected are very
sparse.

This problem is important and can benefit many real world
applications in some ways. For example, indirect influence can
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help improve the efficiency of viral marketing (aka influence
maximization). More information indicated by the indirect
influence can be incorporated into the algorithms to avoid
redundant influence to the same group of users. Indirect influ-
ence can also benefit friend recommendation or link prediction
problems by knowing which pair of disconnected users may
have potential high indirect influence.

Challenges and the Solution. The problem is very chal-
lenging as well. First, information about users who are not
directly connected is rare as they may not have any interactions
in the social network. It is natural for us to consider mining
the indirect influence from their intermediate users and paths.
However, the number of potential paths between two users is
exponentially large. Investigating all the paths between two
users is unrealistic when facing large scale social networks.
It is nontrivial to determine which paths are more important
for a user to influence another indirectly. Furthermore, most
of the previous works on social influence infer the influence
intensity from the propagation cascade data [14], [23] , which
is often partial, sparse and could be very different over time.
Thus, how to make full use of some local cascade data rather
than that of the whole network is worth considering.

To address these difficulties, we first formally define the
concept of Cascaded indirect Influence with Influence Path.
Specifically, a user s may pass his influence to another user ¢
by the paths between them. If ¢ is heavily influenced by some
intermediate users and these users are heavily influenced by
the user s, t is probably influenced by s indirectly. Figure 1(a)
shows an example of the indirect influence. The cascaded
indirect influence will be the probability that user ¢ is activated
given the direct pairwise influence network bridging the two
users and the fact user s is activated.

To further handle the challenges that the number of paths is
too large as well as the cascade data is partial and sparse,
we propose a novel problem of learning indirect influence
from social networks under the partial monitoring setting.
That is, the learning algorithm is asked to guess limited
number of paths with highest influence at each time and then
is allowed to observe the influence on these paths. At the
next time stamp, the algorithm makes another guess based
on the observed history data. The algorithm is required to
minimize the gap between the cascaded indirect influence in
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Figure 1. (a) Example of indirect influence, (b) Performance of comparison methods on Weibo (by Normalized Regret) and (c) Performance on AMiner.

the observed network and that in real network (aka regret).
As the problem inherently asks to maintain an exploration-
exploitation balance to achieve good performance, we propose
two algorithms, E-EXP3 and RE-EXP3 based on the well
known online learning algorithms EXP3 [5]. We prove that
the expected cumulative regret in E-EXP3 is O(v/T).

Contribution. We summarize our main contributions as
follows,

o We formulate the concept of cascade indirect influence
and propose a novel online learning problem, learning
cascaded indirect influence in large partial monitoring
social networks, which makes us able to use dynamic
and local cascade data to infer indirect social influence.

o We propose two online learning algorithms, E-EXP3 and
RE-EXP3, to solve the problem and theoretically prove
that the E-EXP3 algorithm results in a cumulative regret
bound of O(\/T), where T is the number of time stamps.

« We evaluate the proposed algorithms on both synthetic
and real network datasets (Weibo! and AMiner?). Our
empirical study (as shown in Figure 1(b) and 1(c)) on
two real networks shows that the proposed algorithms
significantly outperform several alternative methods in
terms of normalized regret.

e We also find that RE-EXP3 is more practical compared
with E-EXP3, with a convergent ratio of 100x faster than
E-EXP3. We applied the learned indirect influence by
RE-EXP3 to help behavior prediction. Experiments show
that RE-EXP3 can help achieve a significant improvement
(10-15% by accuracy) for behavior prediction.

Organization. The rest of the paper is organized as follows.
Section 2 formulates the problem. Section 3 proposes the
algorithms, E-EXP3 and RE-EXP3, and provides theoretical
analysis of the algorithms. Section 4 presents experimental re-
sults. Section 5 reviews related works and Section 6 concludes
the paper.

II. PROBLEM FORMULATION

Inspired by Independent Cascade (IC) Model[17], we first
give the definition of cascaded indirect influence by formu-

Thttp://weibo.com, the largest Chinese microblogging service.
Zhttp://aminer.org, an author-centric search and mining system.

lating the concept of influence path and then give the formal
description of the problem of learning indirect influence in
partial monitoring setting.

A. Cascaded Influence

Definition 1. Dynamic (Direct) Influence Network. Given
a time series t,t =1,2,....,T, we define a social network as
a weighted directed acyclic graph Gy = (V, E,W,), where
V and FE indicates the set of users and directed edges,
respectively. And w.; € Wy,e € E indicates the pairwise
direct influence on edge e at time t.

The pairwise direct influence on edges can be obtained
in different ways, e.g., methods in [14], [23]. In this paper,
we just define the pairwise influence w, ¢, e = (u,v) as the
intensity of the behavior following between u and v with an
exponential decaying kernel:

e = X e

where 7; is the time of the i;, time when v follows wu’s
behavior and 4 is a constant.

Given a dynamic influence network, we define the influence
path as follows,

Definition 2. Influence Path. Given two users u,v € V,
an influence path p,, from u to v is a sequence of edges
eW e@ ™ such that e = (u,v1),e9) = (v;_1,v;)
for all 5 = 2,3,...m — 1, and ™ = (v,_1,v). Let
Puv = {Puvyiri = 1,2,..., N} denote the set of all such
paths from u to v.

For simplicity, we omit all the subscript (u,v) of the
variables as we only talk about the influence from u to v
in the whole paper.

Then we can derive the cascaded indirect influence from u
to v based on IC Model. At time t, given u is activated, the
influence probability I;(p;) that v is activated through a path
pi € P is

ILi(p;) = H We ¢

eep;

(D

We simplify the IC model by supposing each path has
the chance to activate v independently, then the influence



probability I; that v is activated by v indirectly is
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Omiit the high-order terms of I;(p;) and take the top-k terms
of the first-order I;(p;) as the cascaded indirect influence from
u to v.

Definition 3. Cascaded Indirect Influence. The cascaded
indirect influence from w to v is defined as the sum of the
top k influence score among all the paths in P,

max Z I:(p:)

P e 3)
st |Q =k

For simplicity, we use the term “indirect influence” instead
of “cascaded indirect influence” in the following parts of this

paper.

B. Partial Monitoring Setting

As the number of the intermediate paths bridging two users
are exponentially large, learning indirect influence from all the
paths is intractable. Thus we formulate the problem in a more
realistic setting where we could only be able to access limited
number of influence paths. This problem can be viewed as a
partial monitoring game.

We first define the estimated indirect influence given a
decision strategy.

L(D) = Y Lip) )

pi€Dy

where Dy C P,|D;| = k is a set of k paths chosen by a
decision strategy at time .

In the partial monitoring games, a strategy is usually mea-
sured in terms of regret, which is here defined as the difference
between the estimated indirect influence and the real indirect
influence. In general, the regret grows with the game rounds
T. If the regret is sublinear of 7', the strategy is said to be
Hanna consistent, which means that the strategy’s average per-
round regret will approach to the best strategy in hindsight[6].
Here we define the normalized regret,

T
aXZZIt pz Zj Dt (5)
pi€Q t=1 t=1
st 1Q| = k

Then we could define the task of learning indirect influence
as a problem minimizing the normalized regret.

Problem 1. Given the weighted DAG G = (V, E, W), at each
time step t, the decision maker is asked to choose k paths from
u to v to calculate the estimated indirect influence I, where the
pairwise direct influence we  is visible to the decision maker
only if e is included in the paths. The goal is to minimize the

average regret between the estimated indirect influence and
the best decision over 'T' rounds

min — (max E E I(
decision " "QCP t pl
pi€Q t=1

T ~
z::I Dy)) ©

III. THE PROPOSED ALGORITHMS
A. Exploration-Exploitation Strategy

In Section 2, we formulated the problem of learning indirect
influence in large partial monitoring social networks, where
the goal is to choose top k influence paths between two user
nodes in each time stamp in order to minimize the regret of
the estimated indirect influence. In this section, we encode
this problem specifically into the multi-armed bandit setting,
which is a special case of partial monitoring games.

In traditional bandit models, the player is presented with a
set of IV actions. In each round, the player chooses an action
out of them. The environment assigns a gain to each action
and then the player suffers a regret between the chosen action
and the best action but gains of the not chosen actions are
invisible to the player.

Although sharing the need of exploration-exploitation bal-
ance with bandit models, the problem in this paper, which
has networked data and requires more than one action at each
time, could not fit the traditional bandit model directly.

Therefore, we propose an algorithm called E-EXP3 based on
the EXP3 (Exponential-weight algorithm for Exploration and
Exploitation) algorithm[5] and CMAB (Combinatorial Multi-
Arm Bandit) problem model [10], which can achieve the
bound O(v/T) of cumulative regret over 7" rounds.

Influence Normalization. Due to technical reasons, we need
to first transform the formulation of influence path from the
product to summation form. Also, we need to transform the
influence w, ¢ into a unit gain form g.; in order to facilitate
the following theoretical analysis.

Let Iy = —log(;me=t,—) and define

le,t

et =1— I
maxe,t e,t

It’s easy to check that 0 < g, < 1.
Subsequently we could write the influence on path p; in the

gain form
it = Z Je,t
eEpi

We further introduce the notations denoting the cumulative
gains (G.,r and G; r) of the edges and paths,

T T
Ge,T = E Ye,t> Gv',,T = E it
t=1 t=1

Consequently, the normalized regret in terms of gain be-
comes,
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Figure 2. An example explaining how E-EXP3 works. (a) At the original time the algorithm knows nothing about the influence on the network. (b) The
algorithm chooses k paths to get an estimated cascaded influence at each time stamp. (c) At next time stamp, the algorithm exploits the historical data as
well as randomly explores some unknown paths to get better estimates on the cascaded influence (top k paths).
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Combinatorial Path Bandit. Combinatorial multi-armed
bandit (CMAB) problems are proposed in recent years, where
simple arms in the traditional bandit model compose super
arms. CMAB setting matches our problem of choosing top-k
influence paths. Suppose there are d paths from s to ¢, we
can consider each path as a simple arm while any path set
consisting of k paths treated as a super arm. In each round, a
super arm is chosen to play while only the gain of each related
simple arm is revealed.

A simple way to choose a super arm at each round is
to sample it from the distribution over all of these super
arms, and the bound of regret of this basic CMAB strategy
can be proved to be VT over T rounds [3]. Nonetheless,
This method is impractical. The number of the super arms
may increase exponentially due to combinatorial explosion.
Thus the algorithm may behave no better than a uniform
random method unless running exponential numbers of time
steps. To address this problem, we adopt a heuristic greedy
strategy, where we sample k paths (simple arms) from the path
distribution to get the super arm at each round. This strategy
performs well in the the experiments.

There are many bandit algorithms which could be instanti-
ated under the CMAB framework. A UCB (Upper Confidence
Bound) Type instance is given by [10]. However, UCB type al-
gorithms acquire invariant statistic assumptions on data during
the game. In this paper, we adopt the EXP3 type algorithm,
which is designed for non-stochastic problem settings without
any statistic assumptions on data.

Edge Bandit. Once we consider each path as a simple
bandit, the mutual independence among these paths is set as a
hypothesis. This assumption will lose the network information.
Different paths may share common edges thus provide some

information about paths those are even not chosen. Therefore,
using edges as bandits will reduce the cost of exploration.

Specifically, [15] introduces a concept of path cover set C,
which is a set of paths where for each edge e € E, there is a
path p; € C such that e € p;. As one can always find the set
C such that |C| < |P|, the exploration cost could be reduced
by merely exploring the paths in C instead of P.

This property could also be applied to our problem. We
estimate the gains for each edge instead of each path. The
estimated gains of paths are calculated from the estimated
gains of the edges they consist of.

Summary. Summarizing the analysis above, we propose the
algorithm E-EXP3 using a greedy CMAB model, based on
the classical Exponential Weight algorithm for Exploration
and Exploitation (aka EXP3) in [4]. EXP3 ensures exploration
using a mixing term in the sampling distribution, which
is usually derived from a uniform distribution over global
sampling set. Here, we use a uniform distribution over the
path cover set C instead of the full path P.

Figure 2 shows an example of how E-EXP3 runs. Suppose
there are d paths from the user s to the user ¢, at each round
we draw k paths from the distribution over these paths and
observe the real-time gain of each edge included in these
chosen paths. This partial observed information refresh our
knowledge about these paths’ distribution in exponential way.
At the next round, we are more likely to choose the paths
whose cumulative gains were large in the history, which is
called the exploitation. However, we will also choose some
poorly recorded paths at certain probabilities as an exploration.
In general, E-EXP3 achieves a promising trade-off between
exploitation and exploration.

The details of E-EXP3 is shown in Algorithm 1, where p; ¢
and ¢.; denote the sampling distribution of path ¢ and edge ¢
at time ¢ respectively.

B. Theoretical Analysis on Regret Bound

In this section we provide theoretical analysis that the
expected cumulative regret of E-EXP3 is sublinear of round



Algorithm 1: E-EXP3

Input : The edge set E, The path set P, initialize
We,0 = 1 for each e € E, w; o = 1 for each
i € P, normalization factor W = |P|, mixing
coefficient v > 0, learning rate n > 0

Output: The set of k paths Dr chosen at the time T

1t+1
2 while ¢t < T do
3 foreach i € P do
4 if 7 € C then B
5 \ P 1-NFT+
6 else
Wi t—1
7 | i e (=)

8 foreach e € E do

9 L Ge,t — Zi;ggipi,t

10 D; < Sample(p, k)

11 Observe g, ; of the edges included in D;
12 foreach e € i € D; do

13 L We,t «— we’tilenge,t/QG,t

14 foreach i € P do

15 L Wit < [loe e9est/dest
16 Wy ZieP Wi ¢t

17 t+—t+1

T and has a bound of O(V/T).

We use the variable with a prime to denote the correspond-
ing estimate variable, e.g., gé,t denotes the estimate of g ;.
We use ¢ instead of p; to represent a path p; to avoid notation
confusions between the probability and the path.

Here we prove that, in the case when k = 1 (|Dy| = 1),
|P| = N and the maximum length of all paths is K, we have
the following theorem,

Theorem 1. For v = ‘(ilhll)T and 1 = e
max Gy, — [GT} <2K\/(e— DTIC/nN (8

where

A T
Gr = Z 9D, t
=1

Proof. In general, the bound of the expected cumulative regret
is rooted in the relationship between the gain estimate and the
real gain as well as the boundedness of the gain estimate,
which can be represented in the facts showing in Equation (9)
and Inequality (10), (11),

Zpi,tgz/‘,t

ic€P

= 9D, t )

gle,t <1/ges < |C|/v (10)

> pigi <KD gl

i€P eck

(an

These facts can be easily derived from the definitions and
the details can be found in the Appendix of a longer version
of our paper>.

Based on these facts, a pair of lower bound and upper bound
of the exponential weights relate the gain of the best bandit
in hindsight and the expected gain of the strategy. As a result,
the regret between these two gains is bounded.

We first investigate the bounds of the quantity In KT We
can easily obtain that, for any ¢ € P, a lower bound i 1s

w /
In—r =1In E e"%ir —InN >nmax G, —InN (12)
Wo 4 S
i€P
On the other hand, we can use the fact that e* <1+ 2 +
(e —2)x? for all z <1 to obtain the upper bound. Due to the
page limits we give the upper bound of In % as a lemma
0
and leave the proof to the Appendix.

Lemma 2. As long as ng; , <1,

. 2
(= 20K o

/r] A~
In— < G
. - T+ 1—7v i€EP

0 -y

Since we set 7 = «/K|C| in E-EXP3 algorithm, we can
get the inequality ng§7t < 1 . However, the magnitude of
n calculated for the large scale data is much smaller than
1, so inequality nggyt < 1 can be satisfied easily in reality.
Moreover, since the meaning of 7 in our algorithm is learning
rate, we expect that the value of 7 is as large as possible in
the limitation of ng;, < 1, so as to accelerate the speed of
convergence of the algorlthm Therefore, we can adjust the
value of 7 if necessary.

Combining the upper bound with the lower bound (12),we
obtain the inequality below

(13)

Gr >(1 =7 = (e = 2)nK|C|) max G
1_
TN
>(1 . 1 G/ (14
>(1—(e )v)rirggc 0T
K|C|lnN
¥
Hence,
R K|C|In N
<(e—1 il o eSS T
max G p — Gr < (e = 1)ymaxGip + (15)

Take the expectation on both sides and we can get the
normalized regret,

K|C|InN
max Gy 1 — K|C|ln N

E{A }< —1 .
e Cr| <le=lymexCir+

(16)

3http://www.jiagima.me/papers/learning-cascaded-influence.pdf



Algorithm 2: Preprocessing Schedule of RE-EXP3

Input : Preprocessing Round 7}, v, K, |C|
Output: 7,
n < v/K|C|
G«
foreach ¢ in range(T,) do

Choose D; with E-EXP3
LQFQU{ggﬁt:iEDt}

. 1
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Figure 3. Normalized Regret on Synthetic Data

As max;ep G;, 7 < KT, we have

max Gi,r — E {GT} <2K\/(e— DTIC|mN (17

[ [ClInN
7= (e—1)T
_y _ 1/ N
" Kie| T K\ e-vCIT

Therefore, the regret bound obtained by our algorithm is
sublinear and the learner can approach the performance of the
optimal action. O

holds for

C. Relaxation of E-EXP3

Notice that we set n = /K|C| in E-EXP3 algorithm so
that we can get the inequality 7792,15 <1.

As we discuss above, we can enlarge the learning rate n
properly to accelerate the convergence of E-EXP3 algorithm.
Consequently, we propose RE-EXP3 as a relaxation version
of E-EXP3 algorithm to improve the performance on the real
data.

Specifically, we add a preprocessing schedule automatically
estimating an appropriate 7 for the dataset and get the value of
7 using 3-sigma rule. The preprocessing schedule is described
in Algorithm 2.

IV. EXPERIMENTS

In this section, we conduct various experiments to evaluate
the proposed methods for learning indirect influence.

A. Experimental Setup

Datasets. We evaluate the proposed method on three different
networks: Synthetic, Weibo and AMiner.

1) Synthetic: Synthetic data includes 2000 vertexes, 5000
edges and 3000 unique paths. The graph is randomly generated
and the edges are randomly split into two classes. At each
time stamp, the weight of the edge from the first class is
uniformly drawn from [0, 0.3] while that from the second class
is drawn from [0.6, 1]. This setting is based on the assumption
that the weights of the edges are not uniformly distributed,
which distinguishes the bandit algorithms from a random pick
strategy. This assumption is realistic as the real world data
usually has a skewed distribution. 60,000 time stamps are
generated in this way.

2) Weibo[30]*: This dataset comes from Sina Weibo’, the
most popular Twitter-like microblogging service in China,
and consists of over 1,776,950 users, 308,739,489 “following”
relationships and 23,755,810 retweets. The dataset is split into
100 time stamps. The directed edges on Weibo are defined as
the following relationships. The weight associated with each
edge is the intensity that a user retweeting another user in each
time stamp.

3) AMiner[27]°: This dataset comes from AMiner.org7, and
contains 231,728 papers, 269,508 authors and 347,735 citation
relationships. From the original citation data, we extracted a
weighted citation graph from 1988 to 2013. The directed edge
from a user u to v exists if and only if v has ever cited wu.
The weight associated with each edge is the intensity that an
author citing another author in each year.

Comparison Methods. The following methods are compared
in the experiments:

1) P-EXP3: P-EXP3 is the degenerated version of E-EXP3
without making use of the network structure information.

2) E-EXP3: E-EXP3 is the proposed edge-bandit EXP3-
type algorithm, which make use of the structure information
to utilize heavier exploitation.

3) RE-EXP3: RE-EXP3 is the proposed relaxed E-EXP3
algorithm, which better suits the skewed data distribution and
converge faster in practice.

4) CUCB[I0]: CUCB (Combinatorial Upper Confidence
Bound) is a UCB-type bandit algorithm dealing with com-
binatorial bandits.

5) Random: This method randomly selects paths to probe
at each time stamp.

Evaluation Metrics. To quantitatively evaluate the proposed
method, we consider the following performance metrics:

1) Normalized Regret (NR): Normalized regret is the dif-
ference of the algorithm’s average gain and that of the best
expert, which is defined in problem 1.

4Weibo data source: https://aminer.org/billboard/id:55af4227dabfae 1ce3ed 1235

SWeibo website: http://weibo.com/

6 AMiner data source:
https://aminer.org/billboard/id:56d7ef72c35f4f94cd5238a7

7 AMiner website: https://aminer.org/



2) Relative Normalized Regret (RNR): Relative Normalized
Regret is the fraction of normalized regret of an algorithm over
that of the trivial baseline algorithm Random. This metric is
designed to show average performance of sampled data in real
networks.

3) Application Improvement: We apply the obtained indi-
rect influence score to help the application of predicting the
behavior following. Specifically, we treat the influence scores
obtained by our algorithms as features, then use SVM and
Logistic Regression to predict whether a pair of users have
behavior following action. In this paper, we use retweeting
on Weibo as the behavior following action. We compare the
prediction result of influence scores with that of some user
profile features, e.g., number of tweets, available in the Weibo
dataset.

B. Experiments on Normalized Regrets

We evaluate the five algorithms by both Normalized Regret
and Relative Normalized Regret on synthetic and by only
Relative Normalized Regret on Weibo and AMiner. On Weibo
and AMiner, we extracted 1500 pairs of users as well as all
the paths from the source user to the target user with length
no larger than 4. We run the five algorithms respectively on
all the sampled networks and calculated the average Relative
Normalized Regret. In all the experiments here, £ is set to 10.
The algorithm is allowed to run ten times at each time stamp
on the two real networks to compensate the lack of data to
establish more time stamps. Although the algorithms terminate
soon after the 100th (for Synthetic and Weibo) or 44th (for
AMiner) time stamps, 7" is set to 600,000 to guarantee that
v < 1.

Figure 3 shows the NR and RNR on synthetic data and
provides a visual comparison between the two metrics. The
synthetic data has a longer time range and thus better char-
acterize the convergence property of the algorithms. Figure 1
shows the average RNR on Weibo and AMiner.

Despite different types of datasets, the results show very
similar trends. At the start time, all the algorithms, except
CUCB, have no information and appear to be the same as
Random. As the bandit algorithms gathering more information,
they appear to be better and better comparing to Random.
CUCB has a fast convergence due to the preprocessing sched-
ule. However, the performance of RE-EXP3 comes to be the
best and CUCB falls behind. The EXP3-type algorithms can
better handle the non-stochastic situation and thus outperform
CUCB after enough rounds of time. From P-EXP3, E-EXP3
to RE-EXP3, the algorithms grow to have reasonable heavier
exploitation than exploration and thus make the normalized
regret converge faster. E-EXP3 and RE-EXP3 should have
similar performance in the end but RE-EXP3 performs better
in real data thanks to its fast convergence.

C. Experiments on Application Improvement

We use the learned indirect influence score to help improve
the application of predicting behavior following. Specifically,
we use the task of predicting retweeting on Weibo.

Table 1
APPLICATION IMPROVEMENT - LOGISTIC REGRESSION
Methods | Accuracy | Precision | Recall | F1 score
PF 0.55 0.58 0.45 0.51
P-EXP3 0.57 0.58 0.55 0.57
E-EXP3 0.59 0.61 0.55 0.58
RE-EXP3 0.64 0.65 0.63 0.64
FO 0.70 0.77 0.60 0.68
Table 11
APPLICATION IMPROVEMENT - SVM
Methods | Accuracy | Precision | Recall | F1 score
PF 0.58 0.57 0.72 0.63
P-EXP3 0.56 0.58 0.53 0.55
E-EXP3 0.58 0.60 0.55 0.57
RE-EXP3 0.63 0.65 0.61 0.63
FO 0.70 0.77 0.57 0.66

Given a pair of users, we treat the influence scores obtained
by our algorithms as well as by fully observed network as
features to predict the retweeting behaviors. We compare the
results with that using the user profile features available in
the Weibo dataset. We use SVM and Logistic Regression
respectively as the classifiers in these experiments.

As the retweeting behavior is relatively rare and sparse, we
view the retweeting relationship of a pair of users exists if
there is a retweeting in any time stamp. Meanwhile, we use
the indirect influence scores in the last ten time stamps as the
features. We use 2/3 of the sampled data in Weibo as training
data and 1/3 as test data. We evaluate the performance of
behavior prediction in terms of Accuracy, Precision, Recall
and F-1 score. The results are shown in Table I and Table
II, where PF represents user profile features and FO represent
influence scores obtained from the fully observed network,
which serves as a ground-truth.

The results show that the fully observed (FO) influence
scores are the best features to predict the retweeting behaviors.
The result of FO outperforms other features in terms of almost
all the metrics using either SVM or Logistic Regression. While
this feature is hard to obtain in real world online social
networks, a partial monitoring model based algorithm RE-
EXP3 is also able to achieve near performance.

V. RELATED WORK

Social Influence. Considerable work has been conducted to
quantify the effect of social influence in terms of different
forms. [29] tackled the data sparsity of influence propagation.
[13] investigated the effect of novelty decay on influence
propagation. [21] proposed a probabilistic model to quan-
tify the external influence out-of-network sources. [20] used
the exploration-exploitation framework to handle the online
influence maximization problem while our work is more
general purposed. Similar to this work, [23] and [14] derived
influence measure from IC model [17] but they focused on
pairwise influence instead of indirect influence. To our best
knowledge, [24] is the only work investigating such kind



of influence but they mainly discussed the existence and
prototypical explanation of indirect influence without giving
detailed measurements of a given pair of users. We propose
the first feasible quantitative social influence measurement
between users who are not connected directly.

Multi-armed Bandit. Multi-armed bandit was first in the
nonstochastic setting by [5], who provided an exponential
weight algorithm with a O(v/T) bound of the cumulative
regret, and [2] improved the result. Many variants of the basic
multi-armed bandit problem have been developed , including
combinatorial multi-armed bandit problem (CMAB) in [9],
[10], [11]. Our problem belongs to the semi-bandit version of
CMAB [18], [19] with nonstochastic assumption. This version
is required to choose a set of arms as a super-arm at each time
and can observe the feedback of each arm within this super-
arm. This setting has more information than the basic bandit
problem and accords with our cascaded influence learning
problem. more effective algorithms are developed in [15], [16]
by incorporating the bandit structure into the algorithm. We
take advantages from [14] and [16] developing two effective
algorithms for our problem.

VI. CONCLUSIONS

In this paper, we study a novel problem of cascade indirect
influence based on the Independent Cascade model and pro-
pose two online learning algorithms (E-EXP3 and RE-EXP3)
for learning the cascaded influence in the partial monitoring
setting. We theoretically prove that E-EXP3 has a cumulative
regret bound of O(+/T). We compare the proposed algorithms
with three baseline methods on both synthetic and real net-
works (Weibo and AMiner). Our empirical study on both real
and synthetic networks shows that the proposed algorithms
significantly outperform several alternative methods in terms
of normalized regret. We also apply the learned cascaded
influence to help behavior prediction and experiments show
that our proposed algorithms can significantly help improve
the accuracy of behavior prediction.
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