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Abstract

NMF and PLSI are two state-of-the-art unsupervised learning models in data mining, and both are
widely used in many applications. References have shown the equivalence between NMF and PLSI
under some conditions. However, a new issue arises here: why can they result in different solutions
since they are equivalent? or in other words, their algorithm differences are not studied intensively yet.
In this note, we explicitly give the algorithm differences between PLSI and NMF. Importantly, we find
that even if starting from the same initializations, NMF and PLSI may converge to different local
solutions, and the differences between them are born in the additional constraints in PLSI though NMF
and PLSI optimize the same objective function.
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1. Introduction

Nonnegative Matrix Factorization (NMF,[[1][2][3]) is evolved from Principal Component Analysis
(PCA,[4]]5]). PCA is one of the basic techniques for extracting the principal components (factors) from
a series of vectors such that each vector is a linear combination of the components. One basic problem
with PCA is that there are both positive and negative elements in each of the principal components and
also both positive and negative coefficients in linear combinations. However the mixed signs contradict
our experience and make it hard to explain the results. In fact, in many applications such as image
processing, biology or text mining, nonnegative data analysis is often important and nonnegative
constraints on the wanted principal components (basis matrix) and coefficients (coding matrix) can
improve interpretability of the results. NMF is thus proposed to address this problem. In particular,
NMF aims to find the nonnegative basic representative factors which can be used for feature extraction,
dimensional reduction, eliminating redundant information and discovering the hidden patterns behind
a series of non-negative vectors. NMF has been successfully applied to the field of unsupervised
learning in data mining. In [6] it has been shown that when the least squares error is selected as the cost
function, NMF is equivalent to soft K-means model, which establishes the theoretical foundation of
NMF used for data clustering. Besides the traditional least squares error (Frobenius norm), there are
other divergence functions that can be used as the cost functions for NMF, such as generalized K-L
divergence and chi-square statistic ([2][7]). In [7] it has been shown that constrained NMF using with
generalized K-L divergence has a close relationship with Probabilistic Latent Semantic Indexing.

Probabilistic Latent Semantic Indexing (PLSI, [8]), another state-of-the-art unsupervised learning
model in data mining, is a probabilistic model stemmed from Latent Semantic Analysis (LSA, [9]) .
Compared to LSA, PLSI has a more solid theoretical foundation in statistics and thus is a more
principled approach for analyzing text, discovering latent topics and information retrieval, etc. The
parameters in PLSI model are trained by the Expectation Maximization (EM) algorithm which
iteratively increases the objective likelihood function until some convergence condition is satisfied.
Interestingly, it is proved that maximizing the objective likelihood function in PLSI is equivalent to
minimizing the generalized K-L divergence in NMF. Hence NMF and PLSI optimize the same
objective function (generalized K-L divergence).

In [7][10] it has been shown that any local solution of PLSI is also a solution of NMF with
generalized K-L divergence and vice versa, i.e., the results of PLSI and NMF are equivalent. Indeed,
algorithms of NMF and PLSI are both of gradient descent in nonlinear programming and the solutions
of NMF and PLSI both satisfy KKT conditions ([11][12][8]). But this does not mean that the
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algorithms of NMF and PLSI are identical because there are many local solutions for the objective
function (generalized K-L divergence) and even if starting from the same initializations, NMF and
PLSI may converge to different local solutions. [10] did not further discuss the differences of the
algorithms and the reasons. In this submission, we focus on analyzing the algorithm differences of
NMF and PLSI. We will show that the differences are due to the normalization constraints in PLSI. But
even if one normalizes the factors of NMF to satisfy the constraints, the normalized version of NMF
cannot replace PLSI. Thus we have revealed finely the differences of NMF and PLSI. To our
knowledge, this is the first time to address this problem and report it explicitly. Its implications will
also be discussed.

In summary, the algorithms of NMF and PLSI are very similar, as will be shown later, but different.
Analysis also shows that though NMF and PLSI give equivalent solutions, NMF is faster.

The rest of the paper is organized as follows: Sect. 2 briefly reviews Nonnegative Matrix
Factorization (NMF) using generalized K-L divergence, Sect. 3 briefly reviews Probabilistic Latent
Semantic Indexing (PLSI), Sect. 4 discusses the normalization of NMF, Sect. 5 gives the relations
between NMF and PLSI,, and Sect. 6 concludes.

To easy explanation, Table 1 lists the notations used throughout this paper.

Table 1. Notations used in this paper
A Martrix;

Aji; Element of the ith vow and the jth columm in matrix A

Az=0 Acis element-wise nonnegative, oo A = 0 for all ¢ and j:
- Matrix whose (i, j) — th element 1= kS
5 o 3,
A The updated matrix A at the end of t—th iteration in the algorithng

The (6, 31 — th element. of matrix glel,

2. NMF using Generalized K-L divergence

In general, NMF can be formulated as follows: given a nonnegative matrix %* of size s » a, try to
find two nonnegative matrices I~ of size . x [;and 1 of size «. = &, where & is a predefined parameter
satisfying k < wm, n, such that X == F'<i". This is typically an optimization problem which can be
expressed as:

min JIN, FGT,
F 0.0 20
where .fi 4. [1 is some divergence function that measures the dissimilarity between 4 and 2.
Specifically, if the generalized K-L divergence is selected, the problem is:
XN ) o
min z-: Nijlog [ |r'1|:.rllll-.:|.:.|: XNy + (F el biil

F i i)
The corresponding algorithm is got by gradient descent and can be summarized as Algorithm 17

3. Probabilistic Latent Semantic Indexing

In this section, we briefly review the PLSI model. PLSI is one of the topic models and, given a joint
probabilistic matrix ¥ (i.e., 3, . .X;; = 1., aims to get three nonnegative matrices 1. diagonal 5 and
TT such that 577" is approximation of ¥. As a stochastic model, PLSI maintains the column

normalization property of (. &'and If ateachstep (3_, € = 1.3 Sy = 137 Hjp = 1).

* Unless otherwise defined in this submission, ¥ satisfies 3~ . ¥, = 1.
2\We mainly consider the multiplicative update algorithm of NMF in this paper.

211



Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing
Zhong-Yuan Zhang, Chris Ding, Jie Tang

Algorithm 1 Nonuegative Matrix Factorization (K-L divergence, Mult
plicative Update Rules)
Input: F™ G 1 = |
Output: /¢
t: while 1 do

e B X
2 Update F) 4 o ' G-,
ik S ‘_""]'/——llll'"h(:"‘_ ,'k” yk
— | ik |
y. G X
3 Update ({“ = - 5 - —F,
L s !..n.’_,“[|v("n-—lu.v ’
Fa i s
i: lest for couvergenoe;
b if SOMC CONYergene "'1I|ti7i"ll i‘* ‘~-I'i'~“' ‘I III‘_'“
{ F=F®
[ G = G\"Y;
8 Break
) end if

1 t=141:
11: end while

For simplifying explanation, we take the document analysis task as an example. Given a document
collection %, .. of s+ documents and a vocabulary of «» words, where each element v;; indicates
whether a word «:, occurs in document «f ,, the learning task in PLSI is to find three matrices (7. H and
3, such that ¥ is approxmated by (“STTT, where 1 3 I is the
probability of I, -.;and 5 is diagonal matrix with diagonal element 5. = (= ).

To learn the PLSI model, we can consider maximizing the log-likelihood of the PLSI model
L= nn JMogPlw;.d;). where iz 31is the co-occurrence number of word  and document 3,
and f’(u,.tf_lj =50 Plog |z ) Plzp ) Pld;|z0) = %, CSe M . Here we normalize ¥ to satisfy
3, i X;; = 1, and the log-likelihood function can be rewritten as: L = %~ j X log Play;.d;). The
parameters ¢, 5 and [T are then iteratively got by Expectation-Maximization (EM) algorithm.

The EM algorithm begins with some initial values of (.. H, & and iteratively updates them
according to the following formulas:

E_‘{I-j}'-‘.*' E AY pn
{ ik = T 1 P" . -{"U.-.'_- = Z‘l;'lf"-'.' H_,'J.. = m rl_l
i ' ij .
where % is the probability of
ST H; -
Plsp g, i) = # 2]
Yo S Hy
By combining (1) and (2), one can get:
Speti =T H
'}_‘ 1'|-|.'T"_”; T‘_. 1||- Ll rrL*”llk E_‘I;ufl“._“l_lk
Co = !, . el : Hy. = Iw—u ) 5...'—
L:Il-l': : ; Xi _."\-. t:l;fka.nll:'m o FMJ'E"—;;P-':{I.-L-II.I{-
aa & d l. &
;X N X T T
- m%ﬁm = uﬂ,w; = SudC" oot e
':'r-IJ ij.ll'rk I.r-”l .-"_n.:|l:||TH:|I:Iln’ E Ij
]

® .+ means the latent topic is .
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The algorithm of PLSI is summarized in Algorithm 2.

Algorithm 2 Prolabihstic Latent Semantie Tndexing
Input: ¢ 5% ;"
Output: "S5 H

1owhile | dao

X Hi-
el 1
Update () ( L2 ILLLY .
. { 1 '—~—_’| ) is
cri=iigie =gl "
2 A
| e S =Dy
| & A r =0 -1 ,;' Ab
X I )
1 Updare H) H -
[} A
) ( 'T-—T'—T*'H M ee
Fost aveIrEen
G i Some convergencoo condition 1= =atistiod then
v (' {
- 4 S
o H=H"
1 Break
11 end ir
12 f=¢ 41

15 end while

4. Normalization of NMF

In this section, we will continue to study the normalization of NMF, in other words, we revise NMF
to column normalize 7= and (7 at each step. The main reason of this consideration is that we want to
compare the algorithm differences between NMF and PLSI more easily.

Obviously, in Algorithm 1, it holds that F'H Gt =1 — @10 4 (=1 ! for any two matrices
Jdand Faslongas 477 = Fand FIUA = 0, GV E = 0. If we select special 4 and 7 such that -
is diagonal with Ay, =37, Fip and B = A1, then {F"' 4" is column normalization of i%'".
Similarly, we can get the column normalization of £/,

Based on these observations, we revise the standard NMF algorithm as follows: after line 2 in
Algorithm 1, we firstly column normalize i, and then replace i** by (Z'"=" 31", consequently
update ¢ i, then normalize t."*: and so on. Thus we get the normalization version of NMF
algorithm.

Consequently, we give a conclusion on normalization of NMF. This conclusion can help us

understand the algorithm differences between PLSI and NMF more clearly.
Theorem 1: For NMF, at the ; th iteration, given the triple factors .7¢ -, diagonal matrix '~ ' and
11, which satisfy 37, €1, 7 = 1.5, 57 = 1and ¥, H!,7" = 1, as initializations such that
FU=1 = gli=tigt=tlgnd G-t = =1t or =1 = =1 and 11 = HIC-DS0E=1 1 the
result /*'* can be equivalently formulated as

i X. 1=10
('”I' (.:l—l:- '("-Z'—I:Iﬂ,'n'—].-”:r—li-n"” Yik (4
A Y i R . 4]

' - git—1) prie—1y1 ke
LER) i sl =117 X P _
St 1= Sia (" -Hf-:a—t:-q-:.-—l:u.:J_u;- HY ) (3)
such that
Fitl — it gle), (6]
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Proof: Without loss of generality, suppose that F'*=1! — (/=1 gi=lignd ¢7'"= 1" = F'"*=11 Using
the update rules of NMF, one has:

JqE £ i Jdt—1)
' = .}—(.:I—I: Z ,-J.'.'-j.'—ll;_';u'.'—lll'|”('.-i' '
) 'r_IJ.' A L

Obviously,
FU = (FU D WD), (7)

where T} is diagonal matrix and the diagonal element 73,1, is 5 F"

Let
Cl = (FUYDE (#)

then one has:

Fl 1'-._, Lt=1]
PN L E Fli=1k i1 -.I(‘ i
B F ik ' .".'___. ~it—1]
Y st L ety G
"'-' .'I_Ii.
_ olt-n If'i'—|:_‘-u'll'—11'”:l—Lf-|'” ik
X ) .1'|.-- - .
fei—1)1 [i=11)
! I (=1 =10 (E=1d H Jick

Secondly, let
V= (D s (9)
then one has:

L‘-'I:'J' - Z E .I:.Il. |

”—|:'I-('-|r—||.| ‘1"'-'
LU =L ge-nge-nT -

i b—1]4
T e

= &

Thus the conclusion is proved.

From the above theorem, we can see that t."*: is column normalization of "*:, and the update rule
of ™" is given. In corollary 2, we give an interesting property of %-'-. Note that it is different from the
conclusion in Sec. Normalizations of NMF in ref. [7] in that our property holds at each step in NMF
algorithm.

Corollary 2: For NMF, at the ith iteration, %~ ¢!/' = jand " 5"/ = 1.
i &

Proof: % ¢!/ — 1 is obviously true.

Secondly,
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(1—11 - X p
1] _ {t—1} =147 Wi—1}+
Z “""r‘.-fr Z 5 ik (C ' =gl == 1T G Heke
& L
= Y sEY Xij Fi- 1
f— g ':. il {(.'”_I':'.S':'I_ 1 ||,|'_";|:.'— N7 ] _|.'-' .I
3 ij i
= 1

For ! in NMF, we have similar result.
Corollary 3: For NMF, at the ; th iteration, given the triple factors r."¢~ -:, diagonal matrix &%~ !: and

11 which satisfy S, ¢ 7 =157 87 = 1and 37, BT = 1, as initializations such that
Fri=1 — pli=ligit=t gnd G-t = gir=1l or Fli=11 — =1l gnd GI'=1 = {FI-15it=1" the
result ¢, can be equivalently formulated as

A
=1 g1 fie=1T

o :l.r.'l'.-""'_”:'.-:..
(o (=11 .
Hi = H v

At=11T A =1}y
[{ =1 g1 i I:-'n"” ]H'
e 1) s i N
AT (=1} it =17 =1y
Sgp = 8 1t t--.;|_|:5-[.-—1'.H|r—|:--"H Pk

such that
U = it gl

Based on the above discussions, we can revise Algorithm 1 to Algorithm 3.

Algorithun 3 Nounegative Matrix Factorization®*
Input: C9 S FW ¢ =1
Output: 5, H

1owhile | do

Ay 1)
(=4I — . H -4
' X
Undi . gt git=1) LT 1Y | - (255 1 S
3 pdute 5, ok LC ‘——"‘~|-‘_\'»v71v};‘-l wH Y

(= ) C1)
!("""ﬁ“mﬂ =y,
X

WH ek |

v Update HY = H™"

’ W1 ) o f5T
| |||!;~h~ "'.;. = "“ (|«

| [t for convergence,

if Some convergence condition is satishied then
5 C=0"

9 8= 8

10 H=H"Y;

11 Break

12, end if

[k t=t+ 1

14 end while

Note that the normalization version of NMF will converge to a different local optimum from the
standard NMF. But the revised version has a close relation with the standard one: any stationary point
of Algorithm 3 is also a stationary point of Algorithm 1, and vice versa. More discussions will come in
Sect. 5.

Theorem 4: Any stationary point of Algorithm 3 is also a stationary point of Algorithm 1.
Proof: This is obviously true by joining line 2 and line 3, line 4 and line 5 in Algorithm 3 at

convergence.
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After studying normalization of NMF carefully, we can now have a better insight into the algorithm
differences between PLSI and NMF.

5. Algorithm Relations Between PLSI and NMF

The following conclusions give the relations of 1 (in PLSI) and  (in NMF), FF (in PLSI) and (%
(in NMF).
Theorem 5 (One step equivalence): For PLSI and NMF, at the ; th iteration, given the triple factors
(=t gt=tand (it Cas initializations of PLSI and 1~ 71 =1 as initializations of NMF such
that ¢'!f-1gU=1l — prit=1l gnd HU=1 = Gi=1 or (11=10 = =11 gnd FU-1IEI=10 = Gii=1
(ie., CU-lgli=t =0T — pli-Nglit=1Ty " the update rules of " and I have the following
relations: except for additional normalization, the update rule of ¢ is identical with that of 7 in
NMF, ie., 1" = FUI DT ! where 71, is diagonal matrix and the diagonal element ( {7, b = SO

Proof: The result is obviously true from (3), (4), (5) and (6).

Corollary 6: For PLSI and NMF, at the ; th iteration, given the triple factors ¢'!'~!! 51l and
fi * as initializations of PLSI and F!'""' "~ as initializations of NMF such that
{""_1.'_"1"."'“ _ ;_'—..'—H and ”-j.'—|| _ Ifr":"_” or l:-II‘—IZ- — J|'.~|'.'—I| and ”!l—l:.»:.l'lf—'j- _,lrr-l'-'—ll (i.e.,

CUi=ngli=1 gri=1n — plt=1gli=111 - the update rules of f7 and 1 have the following relations:
except for additional normalization, the update rule of 7 is identical with that of (7 in NMF, i.e.,
H' = GO DZY where Tt is diagonal matrix and the diagonal element ([}, = %~ (e

Hence, NMF with normalization at each iteration has close relationship with PLSI. But this does
not mean that PLSI can be replaced by NMF by normalizing /- and ™ at each step, which can be
observed from Algorithm 3 and Algorithm 2.

The key reason is that PLSI imposes normalization conditions on the factors explicitly. In [7] it has
been shown that PLSI and NMF optimize the same objective function, hence PLSI can be seen as
NMF-based model with additional normalization constraints (3, . = 1.3, Hjp = 1.3 See = 1),
The derivation process of PLSI update rules of i and I7 can be separated into two steps. Take the
update rule of ! while fixing = and 7 for example: firstly one gets the un-normalized ™ by gradient
descent (identical with NMF), and then normalizes ™ to satisfy the constraint . ;;, = 1. The update
rule of [T is got in a similar way. The update rule of 5 can be got even more simply, just by gradient
descent, and the normalization constraints will be satisfied automatically. In detail, at the ; th iteration,
firstly, the derivative of the cost function .J(.\. "5 H ™| with respect to 5 while fixing i and 7 is:

ol

as. = Z '\—w”” fh I .l‘f

— Z X Cinf +1.
T‘u.. ”.JL

Let the step size #..,. — 5., then the update rule of 5 is:

."5. = |_ o)
ke ko ZT[’H.(.--IL.I. 1)

I.ll,lf

7 H

In [10] it has been shown that any local optimum solution of PLSI is also a solution of NMF with

K-L divergence, and vice versa. Theorem 4 has shown similar results between normalized NMF and
standard NMF. These results mean that given the same initializations, PLSI, NMF and normalized
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NMF will give equivalent solutions. Furthermore, we observe that their solution values are always
identical:
st = PGt = Frart (10§
Indeed, this phenomenon is very common in NMF. Roughly speaking, the standard NMF algorithm
can be expressed like this: update =, then update  and so on. Now we revise it to:
update F. update F. --- ,update F, then update (. update (. -- .update (7, and so on.

o
o tines n times

Choosing different s and 1, we can get infinitely many solutions even if given the same initializations.
But these solutions are all having the same solution values.

6. Implications and Conclusion

In this paper we show that though NMF and PLSI optimize the same objective function and can
generate equivalent solutions, still their algorithms are different and PLSI cannot be replaced by NMF.
The reason is that the EM algorithm for PLSI iteratively update the factors ¢*', & and 7 such that r*" &
and [T satisfy the normalization constraints at each iteration while NMF does not include these
constraints. But since NMF with generalized K-L divergence has the interesting fixed row sum and
fixed column sum property, it can also give solutions of PLSI.

This work, combined with the previous results [10][7], has the implications as follows:

Firstly, we have revealed finely the algorithm differences of NMF and PLSI. By comparing
Algorithm 2 with Algorithm 3, one can see that even if we revise the stand NMF algorithm 1 to
normalized NMF, it cannot yet replace PLSI.

Secondly, Algorithms 1 -.. 3 can generate equivalent solutions, but NMF is faster. In other words,
NMF and PLSI optimize the same objective function (generalized K-L divergence), and PLSI model
can be solved by NMF Algorithm 1 and vice versa. Both NMF and PLSI can be used to extract the data
structures, such as clusters or latent topics, and their performance are comparable ([7]). This means
that: on the one hand, similar to NMF, PLSI can also be used to analyze cluster structures in
documents; on the other hand, besides PLSI, the results of NMF can also have a probability
interpretation and from numerical optimization point of view, NMF can generate comparable good
results with PLSI. Note that like PLSI, NMF also has hierarchical extensions, which has been
successfully applied to a small subset of scientific abstracts from PubMed [16][12][17]. Hence this
work makes it more easily for people coming from different backgrounds, who may familiar with NMF
or PLSI, understand each other and enhances communications among different fields. For example, a
problem of natural language processing, which may be solved traditionally by PLSI, can also be solved
by NMF now and even can be done more effectively.

Thirdly, NMF is more flexible regarding the choices of its objective functions and the algorithms
employed to solve it. For example, symmetric NMF with least squares error is equivalent to soft K-
means [6]. NMF using posterior probability normalization (PPC) is more explainable [18]. In particular,
NMF can be viewed as a general unsupervised learning model, and K-means and PLSI are just
variations of NMF. Furthermore, NMF-based algorithms are more powerful to solve them (more
accuracy and robust than greedy algorithm for K-means [6] and faster than EM for PLSI).

Fourthly, since PLSI has been further developed into Latent Dirichlet Allocation (LDA), which
overcomes the difficulty of assigning probability to the new documents [20], one can also consider to
develop NMF into some LDA-like model.

Finally, we give an open problem related to this paper: why (10) holds? In other words, since they
converge to different local solutions, why the solution values are always identical?

CSHT: Results by PLSI
Fi''s Results by NMF
F*&*7: Results by normalized NMF
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