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Abstract 
NMF and PLSI are two state-of-the-art unsupervised learning models in data mining, and both are 

widely used in many applications. References have shown the equivalence between NMF and PLSI 

under some conditions. However, a new issue arises here: why can they result in different solutions 

since they are equivalent? or in other words, their algorithm differences are not studied intensively yet. 

In this note, we explicitly give the algorithm differences between PLSI and NMF. Importantly, we find 

that even if starting from the same initializations, NMF and PLSI may converge to different local 

solutions, and the differences between them are born in the additional constraints in PLSI though NMF 

and PLSI optimize the same objective function. 
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1. Introduction 
 

Nonnegative Matrix Factorization (NMF,[[1][2][3]) is evolved from Principal Component Analysis 

(PCA,[4][5]). PCA is one of the basic techniques for extracting the principal components (factors) from 

a series of vectors such that each vector is a linear combination of the components. One basic problem 

with PCA is that there are both positive and negative elements in each of the principal components and 

also both positive and negative coefficients in linear combinations. However the mixed signs contradict 

our experience and make it hard to explain the results.  In fact, in many applications such as image 

processing, biology or text mining, nonnegative data analysis is often important and nonnegative 

constraints on the wanted principal components (basis matrix) and coefficients (coding matrix) can 

improve interpretability of the results. NMF is thus proposed to address this problem.  In particular, 

NMF aims to find the nonnegative basic representative factors which can be used for feature extraction, 

dimensional reduction, eliminating redundant information and  discovering the hidden patterns behind 

a series of non-negative vectors. NMF has been successfully applied to the field of unsupervised 

learning in data mining. In [6] it has been shown that when the least squares error is selected as the cost 

function, NMF is equivalent to soft K-means model, which establishes the theoretical foundation of 

NMF used for data clustering.  Besides the traditional least squares error (Frobenius norm), there are 

other divergence functions that can be used as the cost functions for NMF, such as generalized K-L 

divergence and chi-square statistic ([2][7]). In [7] it has been shown that constrained NMF using with 

generalized K-L divergence has a close relationship with Probabilistic Latent Semantic Indexing. 

Probabilistic Latent Semantic Indexing (PLSI, [8]), another state-of-the-art unsupervised learning 

model in data mining, is a probabilistic model stemmed from Latent Semantic Analysis (LSA, [9]) . 

Compared to LSA, PLSI has a more solid theoretical foundation in statistics and thus is a more 

principled approach for analyzing text, discovering latent topics and information retrieval, etc.  The 

parameters in PLSI model are trained by the Expectation Maximization (EM) algorithm which 

iteratively increases the objective likelihood function until some convergence condition is satisfied. 

Interestingly, it is proved that maximizing the objective likelihood function in PLSI is equivalent to 

minimizing the generalized K-L divergence in NMF. Hence NMF and PLSI optimize the same 

objective function (generalized K-L divergence). 

In [7][10] it has been shown that any local solution of PLSI is also a solution of NMF with 

generalized K-L divergence and vice versa, i.e., the results of PLSI and NMF are equivalent. Indeed, 

algorithms of NMF and PLSI are both of gradient descent in nonlinear programming and the solutions 

of NMF and PLSI both satisfy KKT conditions ([11][12][8]). But this does not mean that the 
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algorithms of NMF and PLSI are identical because there are many local solutions for the objective 

function (generalized K-L divergence) and even if starting from the same initializations, NMF and 

PLSI may converge to different local solutions. [10] did not further discuss the differences of the 

algorithms and the reasons. In this submission, we focus on analyzing the algorithm differences of 

NMF and PLSI. We will show that the differences are due to the normalization constraints in PLSI. But 

even if one normalizes the factors of NMF to satisfy the constraints, the normalized version of NMF 

cannot replace PLSI. Thus we have revealed finely the differences of NMF and PLSI.  To our 

knowledge, this is the first time to address this problem and report it explicitly. Its implications will 

also be discussed. 

 In summary, the algorithms of NMF and PLSI are very similar, as will be shown later, but different. 

Analysis also shows that though NMF and PLSI give equivalent solutions, NMF is faster. 

The rest of the paper is organized as follows: Sect. 2 briefly reviews Nonnegative Matrix 

Factorization (NMF) using generalized K-L divergence, Sect. 3 briefly reviews Probabilistic Latent 

Semantic Indexing (PLSI), Sect. 4 discusses the normalization of NMF, Sect. 5 gives the relations 

between NMF and PLSI,, and Sect. 6 concludes. 

To easy explanation, Table 1 lists the notations used throughout this paper. 

 

Table 1. Notations used in this paper 

 

 

2. NMF using Generalized K-L divergence 
 

In general, NMF can be formulated as follows: given a nonnegative matrix 
1
 of size , try to 

find two nonnegative matrices  of size  and  of size , where  is a predefined parameter 

satisfying  such that  This is typically an optimization problem which can be 

expressed as: 

 

where  is some divergence function that measures the dissimilarity between  and . 

Specifically, if the generalized K-L divergence is selected, the problem is: 

  

The corresponding algorithm is got by gradient descent and can be summarized as Algorithm 1
2
 

 

3. Probabilistic Latent Semantic Indexing 
 

In this section, we briefly review the PLSI model.  PLSI is one of the topic models and, given a joint 

probabilistic matrix  (i.e.,  ), aims to get three nonnegative matrices  diagonal  and 

 such that  is approximation of . As a stochastic model, PLSI maintains the column 

normalization property of  and  at each step ( ). 

 

                                                           
1 Unless otherwise defined in this submission,  satisfies  
2 We mainly consider the multiplicative update algorithm of NMF in this paper. 
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For simplifying explanation, we take the document analysis task as an example. Given a document 

collection  of  documents and a vocabulary of  words, where each element  indicates 

whether a word  occurs in document , the learning task in PLSI is to find three matrices  and 

, such that  is approximated by , where  is the probability of  
3
,  is the 

probability of  and  is diagonal matrix with diagonal element . 

To learn the PLSI model, we can consider maximizing the log-likelihood of the PLSI model 

 where   is the co-occurrence number of word  and document , 

and . Here we normalize  to satisfy 

  and the log-likelihood function can be rewritten as: . The 

parameters  and  are then  iteratively got by Expectation-Maximization (EM) algorithm. 

The EM algorithm begins with some initial values of  and iteratively updates them 

according to the following formulas: 

 

       

 

where  is the probability of 

 

      

                                      

By combining (1) and (2), one can get: 

 

  

 

                                                           
3  means the latent topic is . 

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 
Zhong-Yuan Zhang, Chris Ding, Jie Tang

212



The algorithm of PLSI is summarized in Algorithm 2. 

 

 
 

4. Normalization of NMF 
 

In this section, we will continue to study the normalization of NMF, in other words, we revise NMF 

to column normalize  and  at each step. The main reason of this consideration is that we want to 

compare the algorithm differences between NMF and PLSI more easily. 

Obviously,  in Algorithm 1, it holds that  for any two matrices 

 and  as long as  and    If we select special  and  such that  

is diagonal with , then  is column normalization of . 

Similarly, we can get the column normalization of  

 Based on these observations, we revise the standard NMF algorithm as follows: after line 2 in 

Algorithm 1, we firstly column normalize , and then replace  by , consequently 

update , then normalize  and so on.  Thus we get the normalization version of NMF 

algorithm. 

Consequently, we give a conclusion on normalization of NMF. This conclusion can help us 

understand the algorithm differences between PLSI and NMF more clearly. 

Theorem 1: For NMF, at the th iteration, given the triple factors , diagonal matrix  and 

, which satisfy  and  as initializations such that 

 and  or  and , the 

result  can be equivalently formulated as 

 

 

 

 

 

such that 
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Proof: Without loss of generality, suppose that  and   Using 

the update rules of NMF, one has: 

 

Obviously, 

 

 

 

where  is diagonal matrix and the diagonal element  is   

Let 

 

 

 

then one has: 

 

 

Secondly, let 

 

 

 

then one has: 

 

Thus the conclusion is proved.  

From the above theorem, we can see that  is column normalization of , and the update rule 

of  is given. In corollary 2, we give an interesting property of . Note that it is different from the 

conclusion in Sec. Normalizations of NMF in ref. [7] in that our property holds at each step in NMF 

algorithm. 

Corollary 2: For NMF, at the th iteration,  and  

Proof:   is obviously true. 

Secondly, 

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 
Zhong-Yuan Zhang, Chris Ding, Jie Tang

214



 

For  in NMF, we have similar result. 

Corollary 3: For NMF, at the th iteration, given the triple factors , diagonal matrix  and 

, which satisfy  and  as initializations such that 

 and  or  and , the 

result  can be equivalently formulated as 

 

 

such that  

 

 

Based on the above discussions, we can revise Algorithm 1 to Algorithm 3. 

 

 
 

Note that the normalization version of NMF will converge to a different local optimum from the 

standard NMF. But the revised version has a close relation with the standard one: any stationary point 

of Algorithm 3 is also a stationary point of Algorithm 1, and vice versa. More discussions will come in 

Sect. 5. 

Theorem 4：Any stationary point of Algorithm 3 is also a stationary point of Algorithm 1. 

Proof： This is obviously true by joining line 2 and line 3, line 4 and line 5 in Algorithm 3 at 

convergence. 
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After studying normalization of NMF carefully, we can now have a better insight into the algorithm 

differences between PLSI and NMF. 

 

5. Algorithm Relations Between PLSI and NMF 

 
The following conclusions give the relations of  (in PLSI) and  (in NMF),  (in PLSI) and  

(in NMF). 

Theorem 5 (One step equivalence): For PLSI and NMF, at the th iteration, given the triple factors 

 and  as initializations of PLSI and  as initializations of NMF such 

that  and  or  and  

(i.e., ),  the update rules of  and  have the following 

relations: except for additional normalization, the update rule of    is  identical with that of  in  

NMF, i.e., where  is diagonal matrix and the diagonal element  . 

 

Proof:  The result is obviously true from  (3), (4), (5) and (6). 

Corollary 6: For PLSI and NMF, at the th iteration, given the triple factors  and 

 as initializations of PLSI and  as initializations of NMF such that 

 and  or  and  (i.e., 

),  the update rules of  and  have the following relations: 

except for additional normalization, the update rule of  is identical with that of  in  NMF, i.e., 

 where is diagonal matrix and the diagonal element . 

Hence, NMF with normalization at each iteration has close relationship with PLSI. But this does 

not mean that PLSI can be replaced by NMF by normalizing  and  at each step, which can be 

observed from Algorithm 3 and Algorithm 2. 

The key reason is that PLSI imposes normalization conditions on the factors explicitly. In [7] it has 

been shown that PLSI and NMF optimize the same objective function, hence PLSI can be seen as 

NMF-based model with additional normalization constraints ( ). 

The derivation process of PLSI update rules of  and  can be separated into two steps. Take the 

update rule of  while fixing  and  for example: firstly one gets the un-normalized  by gradient 

descent (identical with NMF), and then normalizes  to satisfy the constraint  The update 

rule of  is got in a similar way. The update rule of  can be got even more simply, just by gradient 

descent, and the normalization constraints will be satisfied automatically. In detail, at the th iteration, 

firstly, the derivative of the cost function  with respect to  while fixing  and  is: 

 

 

 

Let the step size , then the update rule of  is: 

 

 

 

In [10] it has been shown that any local optimum solution of PLSI is also a solution of NMF with 

K-L divergence, and vice versa. Theorem 4 has shown similar results between normalized NMF and 

standard NMF.  These results mean that given the same initializations, PLSI, NMF and normalized 
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NMF will give equivalent solutions. Furthermore, we observe that their solution values are always 

identical: 
4
 

Indeed, this phenomenon is very common in NMF. Roughly speaking, the standard NMF algorithm 

can be expressed like this: update , then update  and so on. Now we revise it to: 

, then , and so on. 

Choosing different  and , we can get infinitely many solutions even if given the same initializations. 

But these solutions are all having the same solution values. 

 

6. Implications and Conclusion 

 
In this paper we show that though NMF and PLSI optimize the same objective function and can 

generate equivalent solutions, still their algorithms are different and PLSI cannot be replaced by NMF.  

The reason is that the EM algorithm for PLSI iteratively update the factors  and  such that  

and  satisfy the normalization constraints at each iteration while NMF does not include these 

constraints. But since NMF with generalized K-L divergence has the interesting fixed row sum and 

fixed column sum property, it can also give solutions of PLSI.  

This work, combined with the previous results [10][7], has the implications as follows: 

Firstly, we have revealed finely the algorithm differences of NMF and PLSI. By comparing 

Algorithm 2 with Algorithm 3, one can see that even if we revise the stand NMF algorithm 1 to 

normalized NMF, it cannot yet replace PLSI. 

Secondly, Algorithms 1  3 can generate equivalent solutions, but NMF is faster. In other words, 

NMF and PLSI optimize the same objective function (generalized K-L divergence), and PLSI model 

can be solved by NMF Algorithm 1 and vice versa. Both NMF and PLSI can be used to extract the data 

structures, such as clusters or latent topics, and their performance are comparable ([7]). This means 

that: on the one hand, similar to NMF, PLSI can also be used to analyze cluster structures in 

documents; on the other hand, besides PLSI, the results of NMF can also have a probability 

interpretation and from numerical optimization point of view, NMF can generate comparable good 

results with PLSI. Note that like PLSI, NMF also has hierarchical extensions, which has been 

successfully applied to a small subset of scientific abstracts from PubMed [16][12][17]. Hence this 

work makes it more easily for people coming from different backgrounds, who may familiar with NMF 

or PLSI, understand each other and enhances communications among different fields. For example, a 

problem of natural language processing, which may be solved traditionally by PLSI, can also be solved 

by NMF now and even can be done more effectively. 

Thirdly, NMF is more flexible regarding the choices of its objective functions and the algorithms 

employed to solve it. For example, symmetric NMF with least squares error is equivalent to soft K-

means [6]. NMF using posterior probability normalization (PPC) is more explainable [18]. In particular, 

NMF can be viewed as a general unsupervised learning model, and K-means and PLSI are just 

variations of NMF. Furthermore, NMF-based algorithms are more powerful to solve them (more 

accuracy and robust than greedy algorithm for K-means [6] and faster than EM for PLSI). 

Fourthly, since PLSI has been further developed into Latent Dirichlet Allocation (LDA), which 

overcomes the difficulty of assigning probability to the new documents [20], one can also consider to 

develop NMF into some LDA-like model. 

Finally, we give an open problem related to this paper: why (10) holds? In other words, since they 

converge to different local solutions, why the solution values are always identical? 

 

 

 

                                                           
4   
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