
 1

Information Extraction: Methodologies and

Applications

Jie Tang, Mingcai Hong, Duo Zhang, Bangyong Liang, and Juanzi Li

Jie Tang (corresponding author)
Affiliation: Department of Computer Science, Tsinghua University
Telephone: +8610-62788788-20 Fax number: +8610-62789831
E-mail: jietang@tsinghua.edu.cn
Post mail address: 10-201, East Main Building, Tsinghua University, Beijing, 100084.

China.

Mingcai Hong
Affiliation: Department of Computer Science, Tsinghua University
Telephone: +8610-62788788-20 Fax number: +8610-62789831
E-mail: hmc@keg.cs.tsinghua.edu.cn
Post mail address: 10-201, East Main Building, Tsinghua University, Beijing, 100084.

China.

Duo Zhang
Affiliation: Department of Computer Science, Tsinghua University
Telephone: +8610-62788788-20 Fax number: +8610-62789831
E-mail: zhangduo@keg.cs.tsinghua.edu.cn
Post mail address: 10-201, East Main Building, Tsinghua University, Beijing, 100084.

China.

Bangyong Liang
Affiliation: NEC Labs China
Telephone: +86013601002822 Fax number: +8610-62789831
E-mail: liangbangyong@research.nec.com.cn
Post mail address: 11th Floor, Innovation Plaza, Tsinghua Science Park, Beijing,

100084, China

Juanzi Li
Affiliation: Department of Computer Science, Tsinghua University
Telephone: +8610-62781461 Fax number: +8610-62789831
E-mail: ljz@keg.cs.tsinghua.edu.cn
Post mail address: 10-201, East Main Building, Tsinghua University, Beijing, 100084.

China.

 2

Keyword List

Computer Science
Data Resource Management

Data Extraction
Data Management
Data Mining
Knowledge Discovery

Software
Natural Language Processors

Information Systems

Information Theory
Information Processing

 1

Information Extraction: Methodologies and

Applications

Jie Tang1, Mingcai Hong1, Duo Zhang1, Bangyong Liang2, and Juanzi Li1

1Department of Computer Science, Tsinghua University
10-201, East Main Building, Tsinghua University, Beijing, 100084. China

2NEC Labs China
11th Floor, Innovation Plaza, Tsinghua Science Park, Beijing, 100084. China

liangbangyong@research.nec.com.cn

ABSTRACT
This chapter is concerned with the methodologies and applications of information
extraction. Information is hidden in the large volume of web pages and thus it is
necessary to extract useful information from the web content, called Information
Extraction. In information extraction, given a sequence of instances, we identify and
pull out a sub-sequence of the input that represents information we are interested in.
In the past years, there was a rapid expansion of activities in the information
extraction area. Many methods have been proposed for automating the process of
extraction. However, due to the heterogeneity and the lack of structure of Web data,
automated discovery of targeted or unexpected knowledge information still presents
many challenging research problems. In this chapter, we will investigate the problems
of information extraction and survey existing methodologies for solving these
problems. Several real-world applications of information extraction will be
introduced. Emerging challenges will be discussed.

INTRODUCTION
Information Extraction (IE), identifying and pulling out a sub-sequence from a

given sequence of instances that represents information we are interested in, is an
important task with many practical applications. Information extraction benefits many
text/web applications, for example, integration of product information from various
websites, question answering, contact information search, finding the proteins
mentioned in a biomedical journal article, and removal of the noisy data.

Our focus will be on methodologies of automatic information extraction from
various types of documents (including plain texts, web pages, and emails, etc.).
Specifically, we will discuss three of the most popular methods: rule learning based

 2

method, classification model based method, and sequential labeling based method. All
these methods can be viewed as supervised machine learning approaches. They all
consist of two stages: extraction and training.

In extraction, the sub-sequence that we are interested in are identified and extracted
from given data using learned model(s) by different methods. Then the extracted data
are annotated as specified information on the basis of the predefined metadata.

In training, the model(s) are constructed to detect the sub-sequence. In the models,
the input data is viewed as a sequence of instances, for example, a document can be
viewed as either a sequence of words or a sequence of text lines (it depends on the
specific application).

All these methodologies have immediate real-life applications. Information
extraction has been applied, for instance, to part-of-speech tagging (Ratnaparkhi,
1998), named entity recognition (Zhang, 2004), shallow parsing (Sha, 2003), table
extraction (Ng, 1999; Pinto, 2003; Wang, 2002), and contact information extraction
(Kristjansson, 2004).

In the rest of the chapter, we will describe the three types of the state-of-the-art
methods for information extraction. This is followed by presenting several
applications to better understand how the methods can be utilized to help businesses.
The chapter will have a mix of research and industry flavor, addressing research
concepts and looking at the technologies from an industry perspective. After that, we
will discuss the challenges the information extraction community faced. Finally, we
will give the concluding remark.

METHODOLOGIES
Information extraction is an important research area, and many research efforts have
been made so far. Among these research work, rule learning based method,
classification based method, and sequential labeling based method are the three
state-of-the-art methods.

Rule Learning based Extraction Methods
In this section, we review the rule based algorithms for information extraction.

Numerous information systems have been developed based on the method, including:
AutoSlog (Riloff, 1993), Crystal (Soderland, 1995), (LP)2 (Ciravegna, 2001), iASA
(Tang, 2005b), Whisk (Soderland, 1999), Rapier (Califf, 1998), SRV (Freitag, 1998),
WIEN (Kushmerick, 1997), Stalker (Muslea, 1998; Muslea, 1999a), BWI (Freitag,
2000), etc. See (Muslea, 1999b; Siefkes, 2005; Peng, 2001) for an overview. In
general, the methods can be grouped into three categories: dictionary based method,
rule based method, and wrapper induction.

Dictionary based method
Traditional information extraction systems first construct a pattern (template)

 3

dictionary, and then use the dictionary to extract needed information from the new
untagged text. These extraction systems are called as dictionary based systems (also
called pattern based systems) including: AutoSlog (Riloff, 1993), AutoSlog-TS (Riloff,
1996), and CRYSTAL (Soderland, 1995). The key point in the systems is how to learn
the dictionary of patterns that can be used to identify the relevant information from a
text.

AutoSlog (Riloff, 1993) was the first system to learn text extraction dictionary from
training examples. AutoSlog builds a dictionary of extraction patterns that are called
concept nodes. Each AutoSlog concept node has a conceptual anchor that activates it
and a linguistic pattern, which, together with a set of enabling conditions, guarantees
its applicability. The conceptual anchor is a triggering word, while the enabling
conditions represent constraints on the components of the linguistic pattern.

For instance, in order to extract the target of the terrorist attack from the sentence
The Parliament was bombed by the guerrillas.

One can use a concept that consists of the triggering word bombed together with the
linguistic pattern <subject> passive-verb. Applying such an extraction pattern is
straightforward: first, the concept is activated because the sentence contains the
triggering word bombed; then the linguistic pattern is matched against the sentence
and the subject is extracted as the target of the terrorist attack.

AutoSlog uses a predefined set of 13 linguistic patterns; the information to be
extracted can be one of the following syntactic categories: subject, direct object, or
noun phrase. In general, the triggering word is a verb, but if the information to be
extracted is a noun phrase, the triggering word may also be a noun.

In Figure 1, we show a sample concept node. The slot “Name” is a concise, human
readable description of the concept. The slot “Trigger” defines the conceptual anchor,
while the slot “Variable Slots” represents that the information to be extracted is the
subject of the sentence. Finally, the subject must be a physical target (see
“Constraints:”), and the enabling conditions require the verb to be used in its passive
form.

Concept Node:

Name: target-subject-passive-verb-bombed

Trigger: bombed

Variable Slots: (target (*S *1))

Constraints: (class phys-target *S*)

Constant Slots: (type bombing)

Enabling Conditions: ((passive))
Figure 1. Example of AutoSlog concept node

AutoSlog needs to parse the natural language sentence using a linguistic parser. The
parser is used to generate syntax elements of a sentence (such as subject, verb,
preposition phrase). Then the output syntax elements are matched against the
linguistic pattern and fire the best matched pattern as the result pattern to construct a
pattern dictionary.

 4

AutoSlog need tag the text before extracting patterns. This disadvantage has been
improved by AutoSlog-TS (Riloff, 1996). In AutoSlog-TS, one does not need to make
a full tag for the input data and only needs to tag the data whether it is relevant to the
domain or not. The procedure of AutoSlog is divided into two stages. In the first stage,
the sentence analyzer produces a syntactic analysis for each sentence and identifies
the noun phrases using heuristic rules. In the second stage, the pre-classified text is
inputted to the sentence analyzer again with the pattern dictionary generated in the
first stage. The sentence analyzer activates all the patterns that are applicable in each
sentence. The system then computes relevance statistics for each pattern and uses a
rank function to rank the patterns. In the end, only the top patterns are kept in the
dictionary.

Riloff et al (1999) propose using bootstrapping to generate the dictionary with a
few tagged texts (called seed words). The basic idea is to use a mutual bootstrapping
technique to learn extraction patterns using the seed words and then exploit the
learned extraction patterns to identify more seed words that belong to the same
category. In this way, the pattern dictionary can be learned incrementally as the
process continues. See also Crystal (Soderland, 1995).

Rule based method
Different from the dictionary based method, the rule based method use several

general rules instead of dictionary to extract information from text. The rule based
systems have been mostly used in information extraction from semi-structured web
page.

A usual method is to learn syntactic/semantic constraints with delimiters that bound
the text to be extracted, that is to learn rules for boundaries of the target text. Two
main rule learning algorithms of these systems are: bottom-up method which learns
rules from special cases to general ones, and top-down method which learns rules
from general cases to special ones. There are proposed many algorithms, such as
(LP)2 (Ciravegna, 2001), iASA (Tang, 2005b), Whisk (Soderland, 1999), Rapier
(Califf, 1998), and SRV (Freitag, 1998). Here we will take (LP)2 and iASA as
examples in our explanation.
(LP)2

(LP)2 (Ciravegna, 2001) is one of the typical bottom-up methods. It learns two
types of rules that respectively identify the start boundary and the end boundary of the
text to be extracted. The learning is performed from examples in a user-defined
corpus (training data set). Training is performed in two steps: initially a set of tagging
rules is learned; then additional rules are induced to correct mistakes and imprecision
in extraction.

Three types of rules are defined in (LP)2: tagging rules, contextual rules, and
correction rules.

A tagging rule is composed of a pattern of conditions on a connected sequence of
words and an action of determining whether or not the current position is a boundary
of an instance. Table 1 shows an example of the tagging rule. The first column
represents a sequence of words. The second to the fifth columns represent

 5

Part-Of-Speech, Word type, Lookup in a dictionary, and Name Entity Recognition
results of the word sequence respectively. The last column represents the action. In the
example of Table 1, the action “<Speaker>” indicates that if the text match the pattern,
the word “Patrick” will be identified as the start boundary of a speaker.

Table 1. Example of initial tagging rule
Pattern

Word POS Kind Lookup Name Entity
Action

; : Punctuation

Patrick NNP Word Person’s first name <Speaker>

Stroh NNP Word
Person

, , Punctuation

assistant NN Word Job title

professor NN Word

, , Punctuation

SDS NNP Word

The tagging rules are induced as follows: (1) First, a tag in the training corpus is

selected, and a window of w words to the left and w words to the right is extracted as
constraints in the initial rule pattern. (2) Then all the initial rules are generalized. The
generalization algorithm could be various. For example, based on NLP knowledge,
the two rules (at 4 pm) and (at 5 pm) can be generalized to be (at DIGIT pm). Each
generalized rule is tested on the training corpus and an error score E=wrong/matched
is calculated. (3) Finally, the k best generalizations for each initial rule are kept in a so
called best rule pool. This induction algorithm is also used for the other two types of
rules discussed below. Table 2 indicates a generalized tagging rule for the start
boundary identification of the Speaker.

Table 2. Example of generalized tagging rule
Pattern

Word POS Kind Lookup Name Entity
Action

; : Punctuation

 Word Person’s first name <Speaker>

 Word
Person

 Punctuation

assistant NN Word Jobtitle

professor NN Word

Another type of rules, contextual rules, is applied to improve the effectiveness of

the system. The basic idea is that <tagx> might be used as an indicator of the
occurrence of <tagy>. For example, consider a rule recognizing an end boundary

 6

between a capitalized word and a lowercase word. This rule does not belong to the
best rule pool as its low precision on the corpus, but it is reliable if used only when
closing to a tag <speaker>. Consequencely, some non-best rules are recovered, and
the ones which result in acceptable error rate will be preserved as the contextual rules.

The correction rules are used to reduce the imprecision of the tagging rules. For
example, a correction rule shown in Table 3 is used to correct the tagging mistake “at
<time> 4 </time> pm” since “pm” should have been part of the time expression. So,
correction rules are actions that shift misplaced tags rather than adding new tags.

Table 3. Example of correction rule
Pattern Action

Word Wrong tag Move tag to

At

4 </stime>

pm </stime>

After all types of rules are induced, information extraction is carried out in the

following steps:
 The learned tagging rules are used to tag the texts.
 Contextual rules are applied in the context of introduced tags in the first step.
 Correction rules are used to correct mistaken extractions.
 All the identified boundaries are to be validated, e.g. a start tag (e.g. <time>)

without its corresponding close tag will be removed, and vice versa.
See also Rapier (Califf, 1998; Califf, 2003) for another IE system which adopts the

bottom-up learning strategy.
iASA

Tang et al (2005b) propose an algorithm for learning rules for information
extraction. The key idea of iASA is that it tries to induce the ‘similar’ rules first. In
iASA, each rule consists of three patterns: body pattern, left pattern, and right pattern,
respectively representing the text fragment to be extracted (called target instance), the
w words previous to the target instance, and w words next to the target instance. Thus,
the rule learning tries to find patterns not only in the context of a target instance, but
also in the target instance itself. Tang et al define similarity between tokens (it can be
word, punctuation, and name entity), similarity between patterns, and similarity
between rules. In learning, iASA creates an initial rule set from the training data set.
Then it searches for the most similar rules from the rule set and generalizes a new rule
using the two rules. The new rule is evaluated on the training corpus and a score of
the rule is calculated. If its score exceeds a threshold, it would be put back to the rule
set. The processing continues until no new rules can be generalized.

The other type of strategy for learning extraction rules is the top-down fashion. The
method starts with the most generalized patterns and then gradually adds constraints
into the patterns in the learning processing. See SRV (Freitag, 1998) and Whisk
(Soderland, 1999) as examples.

 7

Wrapper induction
Wrapper induction is another type of rule based method which is aimed at

structured and semi-structured documents such as web pages. A wrapper is an
extraction procedure, which consists of a set extraction rules and also program codes
required to apply these rules. Wrapper induction is a technique for automatically
learning the wrappers. Given a training data set, the induction algorithm learns a
wrapper for extracting the target information. Several research works have been
studied. The typical wrapper systems include WIEN (Kushmerick, 1997), Stalker
(Muslea, 1998), and BWI (Freitag, 2000). Here, we use WIEN and BWI as examples
in explaining the principle of wrapper induction.
WIEN

WIEN (Kushmerick, 1997) is the first wrapper induction system. An example of the
wrapper defined in WIEN is shown in Figure 2, which aims to extract “Country” and
“Area Code” from the two HTML pages: D1 and D2.

D1: Congo <I>242</I>

D2: Egypt <I>20</I>

Rule: *‘’(*)‘’*‘<I>’(*)‘</I>’

Output: Country_Code {Country@1}{AreaCode@2}

Figure 2. Example of wrapper induction

The rule in Figure 2 has the following meaning: ignore all characters until you find
the first occurrence of ‘’ and extract the country name as the string that ends at
the first ‘’. Then ignore all characters until ‘<I>’ is found and extract the string
that ends at ‘</I>’. In order to extract the information about the other country names
and area codes, the rule is applied repeatedly until it fails to match. In the example of
Figure 2, we can see that the WIEN rule can be successfully to be applied to both
documents D1 and D2.

The rule defined above is an instance of the so called LR class. A LR wrapper is
defined as a vector <l1, r1, …, lk, rk> of 2K delimiters, with each pair <li, ri>
corresponding to one type of information. The LR wrapper requires that resources
format their pages in a very simple manner. Specifically, there must exist delimiters
that reliably indicate the left- and right-hand boundaries of the fragments to be
extracted. The classes HLRT, OCLR, and HOCLRT are extensions of LR that use
document head and tail delimiters, tuple delimiters, and both of them, respectively.
The algorithm for learning LR wrappers (i.e. learnLR) is shown in Figure 3.

In Figure 3, E represents the example set; notation candsl(k, E) represent the
candidates for delimiter lk given the example set E. The candidates are generated by
enumerating the suffixes of the shortest string occurring to the left of each instance of
attribute k in each example; validl(u, k, E) refers to the constraints to validate a
candidate u for delimiter lk.

 8

procedure learnLR(examples E)

{

for each 1≤k≤K

 for each u∈candsl(k, E)

if validl(u, k, E) then lk ← u and terminate this loop

 for each 1≤k≤K

 for each u∈candsr(k, E)

if validr(u, k, E) then rk ← u and terminate this loop

return LR wrapper <l1, r1, …, lk, rk>

}

Figure 3. The learnLR algorithm

LR wrapper class is the simplest wrapper class. See (Kushmerick, 2000) for variant
wrapper classes.

Stalker (Muslea, 1998; Muslea, 1999a) is another wrapper induction system that
performs hierarchical information extraction. It can be used to extract data from such
documents with multiple levels. In Stalker, rules are induced by a covering algorithm
which tries to generate rules until all instances of an item are covered and returns a
disjunction of the found rules. A Co-Testing approach has been also proposed to
support active learning in Stalker. See (Muslea, 2003) for details.
BWI

The Boosted Wrapper Induction (BWI) system (Freitag, 2000) targets at making
wrapper induction techniques suitable for free text, which uses boosting to generate
and combine the predictions from numerous extraction patterns.

In BWI, a document is treated as a sequence of tokens, and the IE task is to identify
the boundaries of different type of information. Let indices i and j denote the
boundaries, we can use <i, j> to represent an instance.

A wrapper W = <F, A, H> learned by BWI consists of two sets of patterns that are
used respectively to detect the start and the end boundaries of an instance. Here F =
{F1, F2, …, FT} identifies the start boundaries and A = {A1, A2, …, AT} identifies the
end boundaries; and a length function H(k) that estimates the maximum-likelihood
probability that the field has length k.

To perform extraction using the wrapper W, every boundary i in a document is first

given a “start” score () ()
kF kk

F i C F i= ∑ and an “end” score () ()
kA kk

A i C A i= ∑ . Here,

kFC is the weight for Fk, and Fk(i) = 1 if i matches Fk, otherwise Fk(i) = 0. For A(i),

the definition is similar. W then classifies text fragment <i, j> as follows:
 1 if () () ()

(,)
0 otherwise

F i A j H j i
W i j

τ− >⎧
= ⎨

⎩
 (1)

where τ is a numeric threshold.
Learning a wrapper W involves determining F, A, and H.
The function H reflects the prior probability of various field lengths. BWI estimates

these probabilities by constructing a frequency histogram H(k) recording the number

 9

of fields of length k occurring in the training set. To learn F and A, BWI boosts
LearnDetector, an algorithm for learning a single detector. Figure 4 shows the
learning algorithm in BWI.

procedure BWI (example sets S and E)

{

F ← AdaBoost(LearnDetector, S)

A ← AdaBoost(LearnDetector, E)

H ← field length histogram from S and E

return wrapper W = <F, A, H>

}
Figure 4. The BWI algorithm

In BWI, AdaBoost algorithm runs in iterations. In each iteration, it outputs a weak
learner (called hypotheses) from the training data and also a weight for the learner
representing the percentage of the correctly classified instances by applying the weak
learner to the training data. AdaBoost simply repeats this learn-update cycle T times,
and then returns a list of the learned weak hypotheses with their weights. BWI
invokes LearnDetector (indirectly through AdaBoost) to learn the “fore” detectors F,
and then T more times to learn the “aft” detectors A. LearnDetector iteratively builds
from a empty detector. At each step, LearnDetector searches for the best extension of
length L (a lookahead parameter) or less to the prefix and suffix of the current detector.
The procedure returns when no extension yields a better score than the current
detector. More detailed experiments and results analysis about BWI is discussed in
(Kauchak, 2004).

Classification based Extraction Methods
In this section, we introduce another principled approach to information extraction

using supervised machine learning. The basic idea is to cast information extraction
problem as that of classification. In this section, we will describe the method in detail.
We will also introduce several improving efforts to the approach.

Classification model
Let us first consider a two class classification problem. Let {(x1, y1), … , (xn, yn)}

be a training data set, in which xi denotes an instance (a feature vector) and

{ 1, 1}iy ∈ − + denotes a classification label. A classification model usually consists of

two stages: learning and prediction. In learning, one attempts to find a model from the
labeled data that can separate the training data, while in prediction the learned model
is used to identify whether an unlabeled instance should be classified as +1 or -1. (In
some cases, the prediction results may be numeric values, e.g. ranging from 0 to 1.
Then an instance can be classified using some rules, e.g. classified as +1 when the
prediction value is larger than 0.5.)

 10

Support Vector Machines (SVMs) is one of the most popular methods for
classification. Now, we use SVM as example to introduce the classification model
(Vapnik, 1998).

Support vector machines (SVMs) are linear functions of the form f(x) = wTx + b,
where wTx is the inner product between the weight vector w and the input vector x.
The main idea of SVM is to find an optimal separating hyper-plane that maximally
separates the two classes of training instances (more precisely, maximizes the margin
between the two classes of instances). The hyper-plane then corresponds to a classifier
(linear SVM). The problem of finding the hyper-plane can be stated as the following
optimization problem:

 1:
2

. . : () 1, 1,2, ,

T

T
i i

Minimize w w

s t y w x b i n+ ≥ = …

(2)

To deal with cases where there may be no separating hyper-plan due to noisy labels
of both positive and negative training instances, the soft margin SVM is proposed,
which is formulated as:

1

1:
2

. . : () 1 , 1,2, ,

n
T

i
i

T
i i i

Minimize w w C

s t y w x b i n

ξ

ξ
=

+

+ ≥ − =

∑
…

(3)

where C≥0 is the cost parameter that controls the amount of training errors allowed.
It is theoretically guaranteed that the linear classifier obtained in this way has small

generalization errors. Linear SVM can be further extended into non-linear SVMs by
using kernel functions such as Gaussian and polynomial kernels (Boser, 1992;
Schölkopf, 1999; Vapnik, 1999). When there are more than two classes, we can adopt
the “one class versus all others” approach, i.e., take one class as positive and the other
classes as negative.

Boundary detection using classification model
We are using a supervised machine learning approach to IE, so our system consists

of two distinct phases: learning and extracting. In the learning phase our system uses a
set of labeled documents to generate models which we can use for future predictions.
The extraction phase takes the learned models and applies them to new unlabelled
documents using the learned models to generate extractions.

The method formalizes the IE problem as a classification problem. It is aimed at
detecting the boundaries (start boundary and end boundary) of a special type of
information. For IE from text, the basic unit that we are dealing with can be tokens or
text-lines in the text. (Hereafter, we will use token as the basic unit in our explanation.)
Then we try to learn two classifiers that are respectively used to identify the
boundaries. The instances are all tokens in the document. All tokens that begin with a
start-label are positive instances for the start classifier, while all the other tokens
become negative instances for this classifier. Similarly, the positive instances for the
end classifier are the last tokens of each end-label, and the other tokens are negative
instances.

 11

Dr. Trinkle's primary research interests lie in the areas of robotic manipulation

Start
classifier

End
classifier

Professor Steve Skiena will be at CMU Monday, January 13, and Tuesday, February 14.

Start
classifier

End
classifier

Learning
Extracting

Not start
Start

Not end
End

Figure 5. Example of Information Extraction as classification

Figure 5 gives an example of IE as classification. There are two classifiers – one to
identify starts of target text fragments and the other to identify ends of text fragments.
Here, the classifiers are based on token only (however other patterns, e.g. syntax, can
also be incorporated into). Each token is classified as being a start or non-start and an
end or non-end. When we classify a token as a start, and also classify one of the
closely following token as an end, we view the tokens between these two tokens as a
target instance.

In the example, the tokens “Dr. Trinkle’s” is annotated as a “speaker” and thus the
token “Dr.” is a positive instance and the other tokens are as negative instances in the
speaker-start classifier. Similarly, the token “Trinkle’s” is a positive instance and the
other tokens are negative instances in the speaker-end classifier. The annotated data is
used to train two classifiers in advance. In the extracting stage, the two classifiers are
applied to identify the start token and the end token of the speaker. In the example, the
tokens “Professor”, “Steve”, and “Skiena” are identified as two start tokens by the
start classifier and one end token by the end classifier. Then, we combine the
identified results and view tokens between the start token and the end token as a
speaker. (i.e. “Professor Steve Skiena” is outputted as a speaker)

In the extracting stage, we apply the two classifiers to each token to identify
whether the token is a “start”, “end”, neither, or both. After the extracting stage, we
need to combine the starts and the ends predicted by the two classifiers. We need to
decide which of the starts (if there exist more than one starts) to match with which of
the ends (if there exist more than one ends). For the combination, a simple method is
to search for an end from a start and then view the tokens between the two tokens as
the target. If there exist two starts and only one end (as the example in Figure 5), then
we start the search progress from the first start and view the tokens between the first
token and the end token (i.e. “Professor Steve Skiena”) as the target. However, in
some applications, the simple combination method may not yield good results.

Several works have been conducted to enhance the combination. For example, Finn
et al propose a histogram model (Finn, 2004; Finn, 2006). In Figure 5, there are two
possible extractions: “Professor Steve Skiena” and “Steve Skiena”. The histogram
model estimates confidence as Cs * Ce * P(|e - s|). Here Cs is the confidence of the
start prediction and Ce is the confidence of the end prediction. (For example, with
Naïve Bayes, we can use the posterior probability as the confidence; with SVM, we
can use the distance of the instance to the hyper-plane as the confidence.) P(|e - s|) is
the probability of a text fragment of that length which we get from the training data.

 12

Finally, the method selects the text fragment with the highest confidence as output.
To summarize, this IE classification approach simply learns to detect the start and

the end of text fragments to be extracted. It treats IE as a standard classification task,
augmented with a simple mechanism to combine the predicted start and end tags.
Experiments indicate that this approach generally has high precision but low recall.
This approach can be viewed as that of one-level boundary classification (Finn, 2004).

Many approaches can be used to training the classification models, for example,
Support Vector Machines (Vapnik, 1998), Maximum Entropy (Berger, 1996),
Adaboost (Shapire, 1999), and Voted Perceptron (Collins, 2002).

Enhancing IE by a two-level boundary classification model
Experiments on many data sets and in several real-world applications show that the

one-level boundary classification approach can competitive with the start-of-the-art
rule learning based IE systems. However, as the classifiers are built on a very large
number of negative instances and a small number of positive instances, the prior
probability that an arbitrary instance is a boundary is very small. This gives a model
that has very high precision. Because the prior probability of predicting a tag is so low,
and because the data is highly imbalanced, when we actually do prediction for a tag, it
is very likely that the prediction is correct. The one-level model is therefore much
more likely to produce false negatives than false positives (high precision).

To overcome the problem, a two-level boundary classification approach has been
proposed by (Finn, 2004). The intuition behind the two-level approach is as follows.
At the first level, the start and end classifiers have high precision. To make a
prediction, both the start classifier and the end classifier have to predict the start and
end respectively. In many cases where we fail to extract a fragment, one of these
classifiers made a prediction, but not the other. The second level assumes that these
predictions by the first level are correct and is designed to identify the starts and ends
that we failed to identify at the first level.

The second-level models are learned from training data in which the prior
probability that a given instance is a boundary is much higher than for the one-level
learner. This “focused” training data is constructed as follows. When building the
second-level start model, we take only the instances that occur a fixed distance before
an end tag. Similarly, for the second-level end model, we use only instances that occur
a fixed distance after a start tag. For example, an second-level window of size 10
means that the second-level start model is built using only 10 instances that occur
before an end-tag in the training data, while the second-level end model is built using
only those instances that occur in the 10 instances after a start tag in the training data.
Note that these second-level instances are encoded in the same way as for the
first-level; the difference is simply that the second-level learner is only allowed to
look at a small subset of the available training data. Figure 6 shows an example of the
IE using the two-level classification models.

In the example of Figure 6, there are also two stages: learning and extracting. In
learning, the tokens “Dr.” and “Trinkle’s” are the start and the end boundaries of a
speaker respectively. For training the second-level start and end classifiers. We use

 13

window size as three and thus three instances after the start are used to train the end
classifier and three instances before the end are used to train the start classifier. In the
example, the three tokens “Trinkle’s”, “primary”, and “research” are instances of the
second-level end classifier and the token “Dr.” is an instance of the second-level start
classifier. Note, in this way, the instances used for training the second-level classifiers
are only a subset of the instances for training the first-level classifiers. These
second-level instances are encoded in the same way as for the first-level. When
extracting, the second-level end classifier is only applied to the three tokens following
the token which the first-level classifier predicted as a start and the token itself.
Similarly the second-level start classifier is only applied to instances predicted as an
end by the first-level classifier and the three preceding tokens.

Dr. Trinkle's primary research interests lie in the areas of robotic manipulation

The second-level
start classifier

The second-level
end classifier

Professor Steve Skiena will be at CMU Monday, January 13, and Tuesday, February 14.

Learning
Extracting

Not start
Start

Not end
End

Instances of the
end classifier

Instances of the
start classifier

Identified as start by the
first-level start classifier

Predict using the second-
level end classifier

Figure 6. Example of Information Extraction by the two-level classification models

In the exacting stage of the example, the token “Professor” is predicted as a start by
the first-level start classifier and no token is predicted as the end in the first-level
model. Then we can use the second-level end classifier to make prediction for the
three following tokens.

This second-level classification models are likely to have much higher recall but
lower precision. If we were to blindly apply the second-level models to the entire
document, it would generate a lot of false positives. Therefore, the reason we can use
the second-level models to improve performance is that we only apply it to regions of
documents where the first-level models have made a prediction. Specifically, during
extraction, the second-level classifiers use the predictions of the first-level models to
identify parts of the document that are predicted to contain targets.

Figure 7 shows the extracting processing flow in the two-level classification
approach. Given a set of documents that we want to extract from, we convert these
documents into a set of instances and then apply the first-level models for start and
end to the instances and generate a set of predictions for starts and ends. The
first-level predictions are then used to guide which instances we need apply the
second-level classifiers to. We use the predictions of the first-level end model to
decide which instances to apply the second-level start model to, and we use the
predictions of the first-level start model to decide which instances to apply the
second-level end model to. Applying the second-level models to the selected instances
gives us a set of predictions which we pass to the combination to output our extracted

 14

results.
The intuition behind the two-level approach is that we use the unmatched first-level

predictions (i.e. when we identify either the start or the end but not the other) as a
guide to areas of text that we should look more closely at. We use more focused
classifiers that are more likely to make a prediction on areas of text where it is highly
likely that an unidentified fragment exists. These classifiers are more likely to make
predictions due to a much lower data imbalance so they are only applied to instances
where we have high probability of a fragment existing. As the level of imbalance falls,
the recall of the model rises while precision falls. We use the second-level classifiers
to lookahead/lookback instances in a fixed windows size and obtain a subset of the
instances in the first-level classifier.

The first-level start
classifier

Start Model of
first level

Test data

The first-level end
classifier

End Model of first
level

Start predictions of first
level

End predictions of first
level

Start Model of
second level

End Model of
second level

Start predictions of
second level

End predictions of second
level

Prediction results
combination

Extraction results

Figure 7. Extracting processing flow in the two-level classification approach

This enables us to improve recall without hurting precision by identifying the
missing complementary tags for orphan predictions. If we have 100% precision at
first-level prediction then we can improve recall without any corresponding drop in
precision. In practice, the drop in precision is proportional to the number of incorrect
prediction at the first-level classification.

Enhancing IE by unbalance classification model
Besides the two-level boundary classification approach, we introduce another

approach to deal with the problem so as to improve performance of the classification
based method.

As the classifiers are built on a very large number of negative instances and a small
number of positive instances, the prior probability that an arbitrary instance is a
boundary is very small. This gives a model that has very high precision, but low recall.
In this section, we introduce an approach to the problem using an unbalanced
classification model. The basic idea of the approach is to design a specific

 15

classification method that is able to learn a better classifier on the unbalanced data.
We have investigated the unbalanced classification model of SVMs (Support Vector

Machines). Using the same notations in Section 2.2.1, we have the unbalanced
classification model:

1 2

1 1

1:
2

. . : () 1 , 1,2, ,

n n
T

i i
i i

T
i i i

Minimize w w C C

s t y w x b i n

ξ ξ

ξ

+ −

= =

+ +

+ ≥ − =

∑ ∑
…

(4)

here, C1 and C2 are two cost parameters used to control the training errors of positive
examples and negative examples respectively. For example, with a larger C1 and a
small C2, we can obtain a classification model that attempts penalize false positive
examples more than false negative examples. The model can actually increase the
probability of examples to be predicted as positive, so that we can improve the recall
while likely hurting the precision, which is consistent with the method of two-level
classification. Intuition shows that in this way we can control the trade-off between
the problem of high precision and low recall and the training errors of the
classification model. The model obtained by this formulation can perform better than
the classical SVM model in the case of a large number of negative instances and a
small number of positive instances. To distinguish this formulation from the classical
SVM, we call the special formulation of SVM as Unbalanced-SVM. See also (Morik,
1999; Li, 2003) for details.

Unbalanced-SVM enables us to improve the recall by adjusting the two parameters.
We need to note that the special case of SVM might hurt the precision while
improving the recall. The most advantage of the model is that it can achieve a better
trade-off between precision and recall.

Sequential Labeling based Extraction Methods
Information extraction can be cast as a task of sequential labeling. In sequential

labeling, a document is viewed as a sequence of tokens, and a sequence of labels are
assigned to each token to indicate the property of the token. For example, consider the
nature language processing task of labeling words of a sentence with their
corresponding Part-Of-Speech (POS). In this task, each word is labeled with a tag
indicating its appropriate POS. Thus the inputting sentence “Pierre Vinken will join
the board as a nonexecutive director Nov. 29.” will result in an output as:

[NNP Pierre] [NNP Vinken] [MD will] [VB join] [DT the] [NN board]
[IN as] [DT a] [JJ nonexecutive] [NN director] [NNP Nov.] [CD 29] [. .]

Formally, given an observation sequence x = (x1, x2 ,…, xn), the information
extraction task as sequential labeling is to find a label sequence y* = (y1, y2 ,…, yn)
that maximizes the conditional probability p(y|x), i.e.,

 y* = argmaxy p(y|x) (5)
Different from the rule learning and the classification based methods, sequential

labeling enables describing the dependencies between target information. The
dependencies can be utilized to improve the accuracy of the extraction. Hidden

 16

Markov Model (Ghahramani, 1997), Maximum Entropy Markov Model (McCallum,
2000), and Conditional Random Field (Lafferty, 2001) are widely used sequential
labeling models.

For example, a discrete Hidden Markov Model is defined by a set of output
symbols X (e.g. a set of words in the above example), a set of states Y (e.g. a set of
POS in the above example), a set of probabilities for transitions between the states
p(yi|yj), and a probability distribution on output symbols for each state p(xi|yi). An
observed sampling of the process (i.e. the sequence of output symbols, e.g. “Pierre
Vinken will join the board as a nonexecutive director Nov. 29.” in the above example)
is produced by starting from some initial state, transitioning from it to another state,
sampling from the output distribution at that state, and then repeating these latter two
steps. The best label sequence can be found using Viterbi algorithm.

Generative model
Generative models define a joint probability distribution p(X, Y) where X and Y

are random variables respectively ranging over observation sequences and their
corresponding label sequences. In order to calculate the conditional probability p(y|x),
Bayesian rule is employed:

(,)* arg max (|) arg max
()y y

p x yy p y x
p x

= = (6)

Hidden Markov Models (HMMs) (Ghahramani, 1997) are one of the most common
generative models currently used. In HMMs, each observation sequence is considered
to have been generated by a sequence of state transitions, beginning in some start state
and ending when some pre-designated final state is reached. At each state an element
of the observation sequence is stochastically generated, before moving to the next
state. In the case of POS tagging, each state of the HMM is associated with a POS tag.
Although POS tags do not generate words, the tag associated with any given word can
be considered to account for that word in some fashion. It is, therefore, possible to
find the sequence of POS tags that best accounts for any given sentence by identifying
the sequence of states most likely to have been traversed when “generating” that
sequence of words.

The states in an HMM are considered to be hidden because of the doubly stochastic
nature of the process described by the model. For any observation sequence, the
sequence of states that best accounts for that observation sequence is essentially
hidden from an observer and can only be viewed through the set of stochastic
processes that generate an observation sequence. The principle of identifying the most
state sequence that best accounts for an observation sequence forms the foundation
underlying the use of finite-state models for labeling sequential data.

Formally, an HMM is fully defined by
 A finite set of states Y.
 A finite output alphabet X.
 A conditional distribution p(y’|y) representing the probability of moving from

state y to state y’, where y, y’∈Y.

 17

 An observation probability distribution p(x|y) representing the probability of
emitting observation x when in state y, where x∈X, y∈Y.

 An initial state distribution p(y), y∈Y.
From the definition of HMMs, we can see that the probability of the state at time t

depends only on the state at time t-1, and the observation generated at time t only
depends on the state of the model at time t. Figure 8 shows the structure of a HMM.

Figure 8. Graphic structure of first-order HMMs

These conditional independence relations, combined with the probability chain rule,
can be used to factorize the joint distribution over a state sequence y and observation
sequence x into the product of a set of conditional probabilities:

 1 1 1 1
2

(,) () (|) (|) (|)
n

t t t t
t

p y x p y p x y p y y p x y−
=

= ∏ (7)

In supervised learning, the conditional probability distribution p(yt|yt-1) and
observation probability distribution p(x|y) can be gained with maximum likelihood.
While in unsupervised learning, there is no analytic method to gain the distributions
directly. Instead, Expectation Maximization (EM) algorithm is employed to estimate
the distributions.

Finding the optimal state sequence can be efficiently performed using a dynamic
programming such as Viterbi algorithm.

Limitations of generative models. Generative models define a joint probability
distribution p(X, Y) over observation and label sequences. This is useful if the trained
model is to be used to generate data. However, to define a joint probability over
observation and label sequences, a generative model needs to enumerate all possible
observation sequences, typically requiring a representation in which observations are
task-appropriate atomic entities, such as words or nucleotides. In particular, it is not
practical to represent multiple interacting features or long-range dependencies of the
observations, since the inference problem for such models is intractable. Therefore,
generative models must make strict independence assumptions in order to make
inference tractable. In the case of an HMM, the observation at time t is assumed to
depend only on the state at time t, ensuring that each observation element is treated as
an isolated unit, independent from all other elements in the sequence (Wallach, 2002).

In fact, most sequential data cannot be accurately represented as a set of isolated
elements. Such data contain long-distance dependencies between observation
elements and benefit from being represented in by a model that allows such
dependencies and enables observation sequences to be represented by
non-independent overlapping features. For example, in the POS task, when tagging a
word, information such as the words surrounding the current word, the previous tag,

 18

whether the word begins with a capital character, can be used as complex features and
help to improve the tagging performance.

Discriminative models provide a convenient way to overcome the strong
independence assumption of generative models.

Discriminative models
Instead of modeling joint probability distribution over observation and label

sequences, discriminative models define a conditional distribution p(y|x) over
observation and label sequences. This means that when identifying the most likely
label sequence for a given observation sequence, discriminative models use the
conditional distribution directly, without bothering to make any dependence
assumption on observations or enumerate all the possible observation sequences to
calculate the marginal probability p(x).
Maximum Entropy Markov Models (MEMMs)

MEMMs (McCallum, 2000) are a form of discriminative models for labeling
sequential data. MEMMs consider observation sequences to be conditioned upon
rather than generated by the label sequence. Therefore, instead of defining two types
of distribution, a MEMM has only a single set of separately trained distributions of
the form:

 (' |) (' | ,)p y x p y y x= (8)

which represent the probability of moving from state y to y’ on observation x. The fact
the each of these functions is specific to a given state means that the choice of
possible states at any given instant in time t+1 depends only on the state of the model
at time t. Figure 9 show the graphic structure of MEMMs.

Figure 9. Graphic structure of first-order MEMMs

Given an observation sequence x, the conditional probability over label sequence y
is given by

 1 1 1 1
2

(|) (|) (| ,)
n

t t t
t

p y x p y x p y y x− −
=

= ∏ (9)

Treating observations as events to be conditioned upon rather than generated means
that the probability of each transition may depend on non-independent, interacting
features of the observation sequence. Making use of maximum entropy frame work
and defining each state-observation transition function to be a log-linear model,
equation (8) can be calculated as

 19

1(' |) exp((',))

(,) k k
k

p y x f y x
Z y x

λ= ∑ (10)

where Z(y, x) is a normalization factor; λk are parameters to be estimated and fk are
feature functions. The parameters can be estimated using Generalized Iterative
Scaling (GIS) (McCallum, 2000). Each feature function can be represented as a binary
feature. For example:

1 () '

(',)
0

if b x is true and y y
f y x

otherwise
 =⎧

= ⎨ ⎩
 (11)

Despite the differences between MEMMs and HMMs, there is still an efficient
dynamic programming solution to the classic problem of identifying the most likely
label sequence given an observation sequence. A variant Viterbi algorithm is given by
(McCallum, 2000).

Label bias problem. Maximum Entropy Markov Models define a set of separately
trained per-state probability distributions. This leads to an undesirable behavior in
some situations, named label bias problem (Lafferty, 2001). Here we use an example
to describe the label bias problem. The MEMM in Figure 10 is designed to shallow
parse the sentences:

(1) The robot wheels Fred round.
(2) The robot wheels are round.

Figure 10. MEMM designed for shallow parsing

Consider when shallow parsing the sentence (1). Because there is only one
outgoing transition from state 3 and 6, the per-state normalization requires that p(4|3,
Fred) = p(7|6, are) = 1. Also it’s easy to obtain that p(8|7, round) = p(5|4, round) =
p(2|1, robot) = p(1|0, The) = 1, etc. Now, given p(3|2, wheels) = p(6|2, wheels) = 0.5,
by combining all these factors, we obtain

p(0123459|The robot wheels Fred round.) = 0.5,
p(0126789|The robot wheels Fred round.) = 0.5.
Thus the MEMM ends up with two possible state sequences 0123459 and 0126789

with the same probability independently of the observation sequence. It’s impossible
for the MEMM to tell which one is the most likely state sequence over the given
sentence.

Likewise, given p(3|2, wheels) < p(6|2, wheels), MEMM will always choose the
bottom path despite what the preceding words and the following words are in the
observation sequence.

The label bias problem occurs because a MEMM uses per-state exponential model
for the conditional probability of the next states given the current state.

 20

Conditional Random Fields (CRFs)
CRFs are undirected graphical model trained to maximize a conditional probability.

CRFs can be defined as follows:

CRF Definition. Let G = (V, E) be a graph such that Y=(Yv)v∈V, so that Y is indexed
by the vertices of G. Then (X, Y) is a conditional random field in case, when
conditioned on X, the random variable Yv obey the Markov property with respect to
the graph: p(Yv|X, Yw, w≠v) = p(Yv|X, Yw, w∽v), where w∽v means that w and v are
neighbors in G.

A CRF is a random field globally conditioned on the observation X. Linear-chain
CRFs were first introduced by Lafferty et al (2001). Figure 11 shows the graphic
structure of the linear-chain CRFs.

Figure 11. Graphic structure of linear-chain CRFs

By the fundamental theorem of random fields (Harmmersley, 1971), the conditional
distribution of the labels y given the observations data x has the form

 1
1

1(|) exp((, , ,))
()

T

k k t t
t k

p y x f y y x t
Z xλ

λ

λ −
=

= ⋅∑∑ (12)

where Zλ(x) is the normalization factor, also known as partition function, which has
the form

 1
1

() exp((, , ,))
T

k k t t
y t k

Z x f y y x tλ λ −
=

= ⋅∑ ∑∑ (13)

where fk(yt-1, yt, x, t) is a feature function which can be both real-valued and
binary-valued. The feature functions can measure any aspect of a state transition,

1t ty y− → , and the observation sequence, x, centered at the current time step t. λk

corresponds to the weight of the feature fk.
The most probable labeling sequence for an input x

 * arg max (|)yy p y xλ= (14)

can be efficiently calculated by dynamic programming using Viterbi algorithm.
We can train the parameters λ=(λ1, λ2, …) by maximizing the likelihood of a given

training set 1{(,)}N
k k kT x y == :

 1
1 1
((, , ,) log ())

N T
k k t t i i

i t k
L f y y x t Z xλ λλ −

= =
= ⋅ −∑ ∑ ∑ (15)

Many methods can be used to do the parameter estimation. The traditional

 21

maximum entropy learning algorithms, such as GIS, IIS can be used to train CRFs
(Darroch, 1972). In addition to the traditional methods, preconditioned
conjugate-gradient (CG) (Shewchuk, 1994) or limited-memory quasi-Newton
(L-BFGS) (Nocedal, 1999) have been found to perform better than the traditional
methods (Sha, 2004). The voted perceptron algorithm (Collins, 2002) can also be
utilized to train the models efficiently and effectively.

To avoid overfitting1, log-likelihood is often penalized by some prior distribution
over the parameters. Empirical distributions such as Gaussian prior, exponential prior,
and hyperbolic-L1 prior can be used, and empirical experiments suggest that Gaussian
prior is a safer prior to use in practice (Chen, 1999).

CRF avoids the label bias problem because it has a single exponential model for the
conditional probability of the entire sequence of labels given the observation sequence.
Therefore, the weights of different features at different states can be traded off against
each other.

Sequential labeling based extraction methods
By casting information extraction as sequential labeling, a set of labels need to be

defined first according to the extraction task. For example, in metadata extraction
from research papers (Peng, 2004), labels such as TITLE, AUTHOR, EMAIL, and
ABSTRACT are defined. A document is viewed as an observation sequence x. The
observation unit can be a word, a text line, or any other unit. Then the task is to find a
label sequence y that maximize the conditional probability p(y|x) using the models
described above.

In generative models, there is no other features can be utilized except the
observation itself. Due to the conditional nature, discriminative models provide the
flexibility of incorporating non-independent, arbitrary features as input to improve the
performance. For example, in the task of metadata extraction from research papers,
with CRFs we can use as features not only text content, but also layout and external
lexicon. Empirical experiments show that the ability to incorporate non-independent,
arbitrary features can significantly improve the performance.

On the other hand, the ability to incorporate non-independent, arbitrary features of
discriminative models may sometimes lead to too many features and some of the
features are of little contributions to the model. A feature induction can be performed
when training the model to obtain the features that are most useful for the model
(McCallum, 2003).

Non-linear Conditional Random Fields
Conditional Random Fields (CRFs) are the state-of-the-art approaches in

information extraction taking advantage of the dependencies to do better extraction,
compared with HMMs (Ghahramani, 1997) and MEMMs (McCallum, 2000).
However, the previous linear-chain CRFs only model the linear-dependencies in a
sequence of information, and is not able to model the other kinds of dependencies (e.g.

 22

non-linear dependencies) (Lafferty, 2001; Zhu, 2005). In this section, we will discuss
several non-linear conditional random field models.

Condition random fields for relational learning
HMMs, MEMMs and linear-chain CRFs can only model dependencies between

neighboring labels. But sometimes it is important to model certain kinds of long-range
dependencies between entities. One important kind of dependency within information
extraction occurs on repeated mentions of the same field. For example, when the same
entity is mentioned more than once in a document, such as a person name Robert
Booth, in many cases, all mentions have the same label, such as
SEMINAR-SPEAKER. An IE system can take advantage of this fact by favoring
labelings that treat repeated words identically, and by combining feature from all
occurrences so that the extraction decision can be made based on global information.
Furthermore, identifying all mentions of an entity can be useful in itself, because each
mention might contain different useful information. The skip-chain CRF is proposed
to address this (Sutton, 2005; Bunescu, 2005b).

The skip-chain CRF is essentially a linear-chain CRF with additional long-distance
edges between similar words. These additional edges are called skip edges. The
features on skip edges can incorporate information from the context of both endpoints,
so that strong evidence at one endpoint can influence the label at the other endpoint.

Formally, the skip-chain CRF is defined as a general CRF with two clique
templates: one for the linear-chain portion, and one for the skip edges. For an input x,

let {(,)}C u v= be the set of all pairs of sequence positions for which there are skip

edges. The probability of a label sequence y given an x is modeled as

 1
1 (,)

1(|) exp((, , ,) (, , , ,))
()

T
k k t t l l u v

t k u v C l
p y x f y y x t f y y x u v

Z xλ λ λ−
= ∈

= ⋅ + ⋅∑ ∑ ∑ ∑ (16)

where Z(x) is the normalization factor, fk is the feature function similar to that in
equation (12) and fl is the feature function of the skip edges. λk and λl are weights of
the two kinds of feature functions.

Because the loops in a skip-chain CRF can be long and overlapping, exact
inference is intractable for the data considered. The running time required by exact
inference is exponential in the size of the largest clique in the graph’s junction tree.
Instead, approximate inference using loopy belief propagation is performed, such as
TRP (Wainwright, 2001).

Richer kinds of long-distance factor than just over pairs of words can be considered
to augment the skip-chain model. These factors are useful for modeling exceptions to
the assumption that similar words tend to have similar labels. For example, in named
entity recognition, the word China is as a place name when it appears alone, but when
it occurs within the phrase The China Daily, it should be labeled as an organization
(Finkel, 2005).

 23

2D CRFs for web information extraction
Zhu et al (2005) propose 2D Conditional Random Fields (2D CRFs). 2D CRFs are

also a particular case of CRFs. They are aimed at extracting object information from
two-dimensionally laid-out web pages. The graphic structure of a 2D CRF is a 2D
grid, and it’s natural to model the 2D laid-out information. If viewing the state
sequence on diagonal as a single state, a 2D CRF can be mapped to a linear-chain
CRF, and thus the conditional distribution has the same form as a linear-chain CRF.

Dynamic CRFs
Sutton et al (2004) propose Dynamic Conditional Random Fields (DCRFs). As a

particular case, a factorial CRF (FCRF) was used to jointly solve two NLP tasks
(noun phrase chunking and Part-Of-Speech tagging) on the same observation
sequence. Improved accuracy was obtained by modeling the dependencies between
the two tasks.

Tree-structure CRFs for information extraction
We have investigated the problem of hierarchical information extraction and

propose Tree-structured Conditional Random Fields (TCRFs). TCRFs can incorporate
dependencies across the hierarchically laid-out information.

We here use an example to introduce the problem of hierarchical information
extraction. Figure 12 (a) give an example document, in which the underlined text are
what we want to extract including two telephone numbers and two addresses. The
information can be organized as a tree structure (ref. Figure 12 (b)). In this case, the
existing linear-chain CRFs cannot model the hierarchical dependencies and thus
cannot distinguish the office telephone number and the home telephone number from
each other. Likewise for the office address and home address.

Contact Information:
John Booth
Office:
Tel: 8765-4321
Addr: F2, A building
Home:
Tel: 1234-5678
Addr: No. 123, B St.
(a) Example document (b) Organized the document in tree-structure

Figure 12. Example of tree-structured laid-out information

To better incorporate dependencies across hierarchically laid-out information, we
propose a Tree-structured Conditional Random Field (TCRF) model. We present the
graphical structure of the TCRF model as a tree and reformulate the conditional
distribution by defining three kinds of edge features respectively representing the
parent-child dependency, child-parent dependency, and sibling dependency. As the
tree structure can be cyclable, exact inference in TCRFs is expensive. We propose to
use the Tree-based Reparameterization (TRP) algorithm (Wainwright, 2001) to

 24

compute the approximate marginal probabilities for edges and vertices. We conducted
experiments on company annual reports collected from Shang Stock Exchange. On
the annual reports we defined ten extraction tasks. Experimental results indicate that
the TCRFs can significantly outperform the existing linear-chain CRF model (+7.67%
in terms of F1-measure) for hierarchical information extraction. See (Tang, 2006b) for
details.

APPLICATIONS
In this section, we introduce several extraction applications that we experienced.

We will also introduce some well-known applications in this area.

Information Extraction in Digital Libraries
In digital libraries (DL), “metadata” is structured data for helping users find and

process documents and images. With the metadata information, search engines can
retrieve required documents more accurately. Scientists and librarians need use
greatly manual efforts and lots of time to create metadata for the documents. To
alleviate the hard labor, many efforts have been made toward the automatic metadata
generation based on information extraction. Here we take Citeseer, a popular
scientific literature digital library, as an example in our explanation.

Citeseer is a public specialty scientific and academic DL that was created in NEC
Labs, which is hosted on the World Wide Web at the College of Information Sciences
and Technology, The Pennsylvania State University, and has over 700,000 documents,
primarily in the fields of computer and information science and engineering
(Lawrence, 1999; Han, 2003). Citeseer crawls and harvests documents on the web,
extracts documents metadata automatically, and indexes the metadata to permit
querying by metadata.

By extending Dublin Core metadata standard, Citeseer defines 15 different
meta-tags for the document header, including Title, Author, Affiliation, and so on.
They view the task of automatic document metadata generation as that of labeling the
text with the corresponding meta-tags. Each meta-tag corresponds to a metadata class.
The extraction task is cast as a classification problem and SVM is employed to
perform the classification. They show that classifying each text line into one or more
classes is more efficient for meta-tagging than classifying each word, and decompose
the metadata extraction problem into two sub-problems: (1) line classification and (2)
chunk identification of multi-class lines.

In line classification, both word and line-specific features are used. Each line is
represented by a set of word and line-specific features. A rule-based,
context-dependent word clustering method is developed to overcome the problem of
word sparseness. For example, an author line “Chungki Lee James E. Burns” is
represented as “CapNonDictWord: :MayName: :MayName: :
SingleCap: :MayName:”, after word clustering. The weight of a word-specific feature

 25

is the number of times this feature appears in the line. And line-specific features are
features such as “Number of the words in the line”, “The position of the line”, “The
percentage of dictionary words in the line”, and so on. The classification process is
performed in two steps, an independent line classification followed by an iterative
contextual line classification. Independent line classification use the features
described above to assign one or more classes to each text line. After that, by making
use of the sequential information among lines output by the first step, an iterative
contextual line classification is performed. In each iteration, each line uses the
previous N and next N lines’ class information as features, concatenates them to the
feature vector used in step one, and updates its class label. The procedure converges
when the percentage of line with new class labels is lower than a threshold. The
principle of the classification based method is the Two-level boundary classification
approach as described in Section 2.2.3.

After classifying each line into one or more classes, meta-tag can be assigned to
lines that have only one class label. For those that have more than one class label, a
further identification is employed to extract metadata from each line. The task is cast
as a chunk identification task. Punctuation marks and spaces between words are
considered candidate chunk boundaries. A two-class chunk identification algorithm
for this task was developed and it yields an accuracy of 75.5%. For lines that have
more than two class labels, they are simplified to two-class chunk identification tasks
by detecting natural chunk boundary. For instance, using the positions of email and
URL in the line, the three-class chunk identification can be simplified as two-class
chunk identification task. The position of the email address in the following
three-class line “International Computer Science Institute, Berkeley, CA94704. Email:
aberer@icsi.berkeley.edu.” is a natural chunk boundary between the other two classes.
The method obtains an overall accuracy of 92.9%. It’s adopted in the DL Citeseer and
EbizSearch for automatic metadata extraction. It can be also generalized to other DL.
See (Lawrence, 1999; Han, 2003) for details.

Information Extraction from Emails
We also make use of information extraction methods to email data (Tang, 2005a).

Email is one of the commonest means for communication via text. It is estimated that
an average computer user receives 40 to 50 emails per day (Ducheneaut, 2001). Many
text mining applications need take emails as inputs, for example, email analysis, email
routing, email filtering, information extraction from email, and newsgroup analysis.

Unfortunately, information extraction from email has received little attention in the
research community. Email data can contain different types of information.
Specifically, it may contain headers, signatures, quotations, and text content.
Furthermore, the text content may have program codes, lists, and paragraphs; the
header may have metadata information such as sender, receiver, subject, etc.; and the
signature may have metadata information such as author name, author’s position,
author’s address, etc.

In this work, we formalize information extraction from email as that of text-block

 26

detection and block-metadata detection. Specifically, the problem is defined as a
process of detection of different types of informative blocks (it includes header,
signature, quotation, program code, list, and paragraph detections) and detection of
block-metadata (it includes metadata detection of header and metadata detection of
signature). We propose to conduct email extraction in a ‘cascaded’ fashion. In the
approach, we perform the extraction on an email by running several passes of
processing on it: first at email body level (text-block detection), next at text-content
level (paragraph detection), and then at block levels (header-metadata detection and
signature-metadata detection). We view the tasks as classification and propose a
unified statistical learning approach to the tasks, based on SVMs (Support Vector
Machines). Features used in the models have also been defined. See (Tang, 2005a) for
details.

1. From: SY <sandeep....@gmail.com> - Find messages by this author
2. Date: Mon, 4 Apr 2005 11:29:28 +0530
3. Subject: Re: ..How to do addition??

4. Hi Ranger,
5. Your design of Matrix
6. class is not good.
7. what are you doing with two
8. matrices in a single class?make class Matrix as follows

9. import java.io.*;
10. class Matrix {
11. public static int AnumberOfRows;
12. public static int AnumberOfColumns;

13. public void inputArray() throws IOException
14. {
15. InputStreamReader input = new InputStreamReader(System.in);
16. BufferedReader keyboardInput = new BufferedReader(input)
17. }

18. -- Sandeep Yadav
19. Tel: 011-243600808
20. Homepage: http://www.it.com/~Sandeep/

21. On Apr 3, 2005 5:33 PM, ranger <asiri....@gmail.com> wrote:
22. > Hi... I want to perform the addtion in my Matrix class. I got the program to
23. > enter 2 Matricx and diaplay them. Hear is the code of the Matrix class and
24. > TestMatrix class. I'm glad If anyone can let me know how to do the addition.....Tnx

From: SY <sandeep....@gmail.com> - Find messages by this author
Date: Mon, 4 Apr 2005 11:29:28 +0530
Subject: Re: ..How to do addition??

Hi Ranger,
Your design of Matrix class is not good. what are you doing
with two matrices in a single class?make class Matrix as follows

 import java.io.*;
 class Matrix {
 public static int AnumberOfRows;
 public static int AnumberOfColumns;

 public void inputArray() throws IOException
 {
 InputStreamReader input = new InputStreamReader(System.in);
 BufferedReader keyboardInput = new BufferedReader(input)
 }

-- Sandeep Yadav
Tel: 011-243600808
Homepage: http://www.it.com/~Sandeep/

On Apr 3, 2005 5:33 PM, ranger <asiri....@gmail.com> wrote:
> Hi... I want to perform the addtion in my Matrix class. I got the program to
> enter 2 Matricx and diaplay them. Hear is the code of the Matrix class and
> TestMatrix class. I'm glad If anyone can let me know how to do the addition.....Tnx

Email

Header

Text Content

Signature

Forwarded Message

AuthorName
Telephone
Homepage

Program Code

Subject
SentTime

Source

Paragraph

Paragraph

Figure 13. Example of email
message

Figure 14. Annotation results of the email
message

Figure 13 shows an example of email that includes many typical information. Lines
from 1 to 3 are a header; lines from 18 to 20 are a signature; and a forwarded message
lies from line 21 to line 24. Lines from 4 to 8 are the actual text content, which should
be two paragraphs, but is mistakenly separated by extra line breaks. Moreover, the
header has a sender (line 1), a sent time (line 2), and a subject (line 3); the signature
has an author name (line 18), a telephone (line 19), and a homepage (line 20).

Figure 14 shows an ideal result of information extraction on the email in Figure 13.
Within it, the text-blocks (the header, signature and the forwarded message) have been
identified. The actual text content has been detected. In the text content, extra line
breaks have been detected and the text has been annotated as two paragraphs.
Metadata information is recognized in the identified header and the identified
signature.

We propose a cascaded approach for information extraction from email and cast the
extraction tasks as detection tasks of different types of information blocks. We employ
a unified machine learning approach in the detection tasks.

The input is an email message. The implementation carries out extraction in the
following steps. The identified text-blocks and other extraction results in each step
will be saved for use in the later steps.

 27

(1) Preprocessing. It uses patterns to recognize ‘special words’, including email
address, IP address, URL, date, file directory, number (e.g. 5.42), money (e.g. $100),
percentage (e.g. 92.86%), words containing special symbols (e.g. C#, .NET, .doc).

(2) Forwarded message detection. It identifies forwarded messages using
hard-coded rules. It views lines starting with special characters (e.g. >, |, >>) as
forwarded messages. It then eliminates the identified forwarded messages for later
processing.

(3) Header and signature detection. It detects the header and signature (if there exist)
in the email by using a classification model. It next eliminates the identified blocks
(headers and signatures).

(4) Metadata detection in header and signature. It uses the identified headers and
signatures as input and then detects the metadata information from the headers and
signatures, respectively.

(5) List and program code detection. It detects list and program code (if there exist)
in the email with the same approach as that in header and signature detection and
removes them from the text content. After that, only natural language text remains.

(6) Paragraph annotation. It identifies whether or not each line break is a paragraph
ending by using a classification model. If not, it removes the line break. As a result,
the text is segmented into paragraphs. The step is based on paragraph ending
detection.

We make use of Support Vector Machines (SVM) as the classification model
(Vapnik, 1998). We use SVM-light, which is available at http://svmlight.joachims.org/.
We obtain high performances in all detection tasks. (The F1-measuer scores range
from 89.83% to 97.17%.)

The extracted information from email is applied to applications of email data
cleaning (Tang, 2005a) and email classification.

In email data cleaning, we try to remove ‘noisy’ (irrelevant) blocks for a specific
application (e.g. term extraction, a task in which base noun phrases are extracted from
documents) and transform relevant text into a canonical form as that in a newspaper
article. For term extraction, we identify and remove the header, signature, program
code, and forwarded message. We view the remaining text as the relevant text. In the
relevant text, we identify and remove extra line breaks, remove extra punctuations,
and restore badly cased words. Experimental results show that the extraction based
email cleaning can significantly improve the accuracy of term extraction. The
improvements on precision range from +49.90% to +71.15%. See (Tang, 2005a) for
details.

In email classification, we are aimed at taking advantage of the extracted
information to improve the performance of email classification. We evaluated the
classification results on Enron Email Dataset, which is available at
http://www.cs.umass.edu/~ronb/enron_dataset.html. Experimental results show that
the classification performance can be significantly improved (averagely +49.02% in
terms of F1-measure) by making use of the extraction results from emails. The related
issues are what we are currently researching, and will be reported elsewhere.

 28

Person Profile Extraction
Person information management is an important topic in both research community

and industrial community. A person can have different types of information: person
profile (including portrait, homepage, position, affiliation, publications, and
documents), contact information (including address, email, telephone, and fax
number), and social network information (including person or professional
relationships between persons, e.g. friend relationship). However, the information is
usually hidden in heterogeneous and distributed web pages.

We have investigated the problem of person information extraction. We have found
that the person information is mainly hidden in person homepage, person introduction
page (web page that introduces the person), person list (e.g. a faculty list), and email
message (e.g. in signature). We employed the classification based method to extract
the person information from the different types of web pages.

More specifically, in extraction we convert a web page into a token sequence (the
token can be word, punctuation, and space). Then we view each token as a candidate
and define features for each candidate. Due to space limitation, we omit the details of
the feature definition. After that, we use two classification models to respectively
identify whether a token is the start position and whether the token is the end position
for each type of information. We next view the tokens between the start token and the
end token as the target. We can also use the text-line as candidate in extraction.

(a) (b)
Figure 15. Personal Network Search system

For learning the classification models, we have human annotators conduct
annotation on the web pages. We also convert the web page into a token sequence and
view each token as the candidate. Features are defined for each candidate. Finally, we
learn two classification models respectively for the start position identification and the
end position identification for each type of information.

 29

As models, we use SVMs (Support Vector Machines) (Vapnik, 1998). Features are
defined in the SVM models respectively for each type of the information. The average
F1-measure obtained in extraction is 91.18%.

We have developed a system based on the extracted person information, which is
called ‘Personal Network Search’ (PNS shortly). In PNS, the user inputs a person
name, and the system returns the information of the person. Given a person name, we
first utilize Google API to get a list of relevant documents. Then a classification
model is employed to identify whether or not a document in the list is really ‘related’
to the person. Next, we extract person information from the identified documents
using the classification based method as described above.

Figure 15 shows the snapshots of the PNS system. In Figure 15 (a), the user types a
person name, and he gets a detailed description of the person. Figure 15 (b) shows the
list of gathered persons in our current system. See (Tang, 2006a) for details.

Table Extraction Using Conditional Random Fields
Tables — textual tokens laid out in tabular form — are often used to compactly

communicate information in fields and records. They have been described as
“databases designed for human eyes”. Tables appear in the earliest writing on clay
tablets, and in the most modern Web pages. Some make use of line-art, while others
rely on white space only. They sometimes consist merely of two simple columns,
other times of extremely baroque collections of headings, embedded subheadings, and
varying cell sizes. They are used in everything from government reports, to magazine
articles, to academic publications.

Pinto and McCallum (2003) propose a model of table extraction that richly
integrates evidence from both content and layout by using Conditional Random Fields
(CRFs). They describe a method that simultaneously locates tables in plain-text
government statistical reports, and labels each of their constituent lines with tags such
as header, sub-header, data, separator, etc. The features measure aspects of the input
stream such as the percentage of alphabetic characters, the presence of regular
expression matching months or years, and the degree to which white space in the
current line aligns with white space in the previous line. In experiments on
government reports, tables are located with 92% in terms of F1-measure, and lines are
labeled with 94% accuracy — reducing error by 80% over a similarly configured
hidden Markov model with the same features. See (Pinto, 2003) for details. See also
(Wang, 2002).

Shallow Parsing with Conditional Random Fields
Shallow parsing identifies the non-recursive cores of various phrase types in text,

possibly as a precursor to full parsing or information extraction (Abney, 1991). The
paradigmatic shallow parsing problem is NP chunking, which finds the non-recursive
cores of noun phrases called base NPs. The pioneering work of (Ramshaw, 1995)
introduced NP chunking as a machine-learning problem, with standard datasets and

 30

evaluation metrics. The task was extended to additional phrase types for the
CoNLL-2000 shared task (Tjong Kim Sang, 2000), which is now the standard
evaluation task for shallow parsing.

Sha et al (2003) employ Conditional Random Fields (CRFs) into shallow parsing.
They carried out an empirical study on different sequential labeling approaches in
shallow parsing. Their experimental results show that CRFs outperform all reported
single-model NP chunking results on the standard evaluation dataset. They also
compared different kinds of parameter estimation methods for training CRF models
that confirm and strengthen previous results on shallow parsing and training methods
for maximum entropy models.

FUTURE RESEARCH DIRECTIONS
There are a variety of promising directions for future research in applying

supervised machine learning to information extraction.
On the machine-learning side, it would be interesting to generalize the ideas of

large-margin classification to sequence models, strengthening the results of (Collins,
2002) and leading to new optimal training algorithms with stronger guarantees against
overfitting. For example, (Taskar, 2003) proposes a maximal Markov model for
sequential labeling task using the maximal margin theory.

In information extraction, in addition to identifying entities, an important problem
is extracting specific types of relations between entities. For example, in newspaper
text, one can identify that an organization is located in a particular city or that a
person is affiliated with a specific organization (Zelenko, 2003); in biomedical text,
one can identify that a protein interacts with another protein or that a protein is
located in a particular part of the cell (Bunescu, 2005a; Craven, 1999). The entities
may occur in different parts of a sentence or paragraph. New principled methods are
needed to such problems to identify both the entities while identify their relations.
Bunescu and Mooney (2005b) propose to use a Statistical Relational Learning (SRL)
method for the complex problem. They are trying to integrate decision at different
levels (e.g. different kinds of entity identification and different kinds of relations
identification) into the SRL model. Moreover, several recent projects have taken the
first steps in this direction. For example, Sutton (2004) presents a dynamic version of
CRF that integrates part-of-speech tagging and noun-phrase chunking into one
coherent process. (Roth, 2004) presents an information extraction approach based on
linear-programming that integrates recognition of entities with the identification of
relations between these entities.

As another future work, more applications, especially practical applications, need
to be investigated. The new applications can provide rich data sources for conducting
information extraction, at the same time bring big challenges to the field. This is
because various applications have various characteristics, needing to use different
methods to deal with.

 31

CONCLUSIONS
Aiming to apply methods and technologies from practical computer science such as

compiler construction and artificial intelligence to the problem of processing
unstructured textual data automatically, information extraction has become an
important sub-discipline of language engineering, a branch of computer science.
Nowadays, the significance of Information Extraction is determined by the growing
amount of information available in unstructured (i.e. without metadata) form, for
instance on the Internet.

In this chapter, we have reviewed the information extraction methods. Specifically,
we focus on the three state-of-the-art methods: rule learning based method,
classification based method, and sequential labeling base method. We have explained
the principle of the three methods by using several developed systems as examples.
We have also introduced our research work on the information methods and their
applications. We also introduced several practical application of information
extraction, ranging from natural language processing to information extraction from
web pages and plain texts.

The rule learning based method try to exploit the regularity in language expressions
of certain information to find common linguistic patterns that match these expressions.
It is easy to understand by an average user. The method can obtain good performance
when processing some semi-structured documents (e.g. template-based web page). Its
disadvantage lies on that its rudimentary learning mechanisms cannot provide enough
generalization capabilities. This makes it difficult to obtain good performance in
complicated situations (e.g. extraction from natural language text).

The classification based method casts the IE task as a classification problem in
terms of the statistical theory. It can incorporate different types of information
(including words, syntax, a prior knowledge, etc.). Thus it has more generalization
capabilities than the rule based method. In several real-world applications, it can
outperform the rule based method. Its drawback is that its model is usually complex
and it is difficult for the general user to understand (e.g. the feature definition). Thus
the performances of extraction differ from application to application.

The sequential labeling based method can make use of dependencies between
information to improve the extraction performance. It is also based on the statistical
theory and thus has strong generalization capabilities. In many applications, in
particular natural language processing, it can outperform the rule based method and
the classification based method. As for the disadvantage, similar to the classification
based method, it is not easy to be understood by a general user.

Information extraction suffers from uncertainty and implication of the natural
language. Both of the two problems are difficult for machine to automatic extraction,
sometimes even for human. For example, “It is likely that …”. In such sentence, it is
difficult to determine the reliability degree of the information. Consider another
example “After a furious fight, enemy raised the white flag”, here the white flag
means a defeat. However, it would of course difficult for computer to conclude the
implication.

 32

Another interesting also important issue is how to make use of the prior knowledge
in information extraction. So far, a usual method for incorporating the prior
knowledge is to use some domain-specific dictionaries, thesauri in the extraction. The
question is whether the simple method still works well when dealing with more
complex extraction tasks. A further question is if we can incorporate the different
types of prior knowledge into a unified model for extraction.

In future work, research community has to face the rising challenges and focuses on
how to enhance the practical usefulness of IE methods.

ACKNOWLEDGE
The work is funded by the Natural Science Foundation of China under Grant No.
90604025. Thanks to the anonymous reviewers for their constructive suggestions.

REFERENCES
Abney, S. (1991). Parsing by chunks. In R. Berwick, S. Abney, and C. Tenny (Eds.),
Principle-based parsing. Boston: Kluwer Academic Publishers.
Berger, A. L., Della Pietra, S. A., & Della Pietra, V. J. (1996). A maximum entropy
approach to natural language processing. In Computational Linguistics (Vol.22,
pp.39-71). MA: MIT Press.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In D. Haussler (Eds.) 5th Annual ACM Workshop on COLT
(pp.144-152). Pittsburgh, PA: ACM Press.
Bunescu, R., Ge, R., Kate, R. J., Marcotte, E. M., Mooney, R. J., Ramani, A. K., et al.
(2005). Comparative experiments on learning information extractors for proteins and
their interactions. Artificial Intelligence in Medicine (special issue on Summarization
and Information Extraction from Medical Documents). 33(2), pp.139-155.
Bunescu, R. & Mooney, R. J. (2005). Statistical relational learning for natural
language information extraction. In Getoor, L., & Taskar, B. (Eds.), Statistical
Relational Learning, forthcoming book
Califf, M. E., & Mooney, R. J. (1998). Relational learning of pattern-match rules for
information extraction. In Working Notes of AAAI Spring Symposium on Applying
Machine Learning to Discourse Processing. pp.6-11.
Califf, M. E., & Mooney, R. J. (2003). Bottom-up relational learning of pattern
matching rules for information extraction. Journal of Machine Learning Research.
Vol.4, pp.177-210.
Chen, S. F., & Rosenfeld, R. (1999). A Gaussian prior for smoothing maximum
entropy models. Technical Report CMU-CS-99-108, Carnegie Mellon University.
Ciravegna, F. (2001). (LP)2, an adaptive algorithm for information extraction from
Web-related texts. In Proceedings of the IJCAI-2001 Workshop on Adaptive Text
Extraction and Mining held in conjunction with 17th International Joint Conference
on Artificial Intelligence (IJCAI), Seattle, USA.

 33

Collins, M. (2002). Discriminative training methods for Hidden Markov models:
theory and experiments with Perceptron algorithms. In Proceedings of the Conference
on Empirical Methods in NLP (EMNLP’02).
Craven, M., & Kumlien, J. (1999). Constructing biological knowledge bases by
extracting information from text sources. In Proceedings of the 7th International
Conference on Intelligent Systems for Molecular Biology (ISMB-1999). pp.77-86.
Heidelberg, Germany.
Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear
models. The Annals of Mathematical Statistics, 43 (5), pp.1470-1480.
Ducheneaut, N., & Bellotti, V. (2001). E-mail as Habitat: An exploration of embedded
personal information management. Interactions, Vol.8, pp.30-38.
Finkel, J. R., Grenager, T., & Manning, C. D. (2005). Incorporating non-local
information into information extraction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting of the Association for Computational Linguistics
(ACL-2005). pp.363-370.
Finn, A., & Kushmerick, N. (2004). Information extraction by convergent boundary
classification. In AAAI-04 Workshop on Adaptive Text Extraction and Mining. San
Jose, USA.
Finn, A. (2006). A multi-level boundary classification approach to information
extraction. Phd thesis, University College Dublin.
Freitag, D. (1998). Information extraction from HTML: Application of a general
machine learning approach. In Proceedings of the 15th Conference on Artificial
Intelligence (AAAI’98). pp.517-523
Freitag, D., & Kushmerick, N. (2000). Boosted wrapper induction. In Proceedings of
17th National Conference on Artificial Intelligence. pp.577-583
Ghahramani, Z., & Jordan, M. I. (1997). Factorial Hidden Markov Models. Machine
Learning, Vol.29, pp.245-273
Hammersley, J., & Clifford, P. (1971). Markov fields on finite graphs and lattices.
Unpublished manuscript.
Han, H., Giles, L., Manavoglu, E., Zha, H., Zhang, Z., & Fox, E.A. (2003). Automatic
document metadata extraction using support vector machines. In Proceedings of 2003
Joint Conference on Digital Libraries (JCDL’03). pp.37-48
Kauchak, D., Smarr, J., & Elkan, C. (2004). Sources of success for boosted wrapper
induction. The Journal of Machine Learning Research, Vol.5, pp.499-527. MA: MIT
Press.
Kristjansson, T. T., Culotta, A., Viola, P. A., & McCallum, A. (2004). Interactive
information extraction with constrained conditional random fields. In Proceedings of
AAAI’04, pp.412-418
Kushmerick, N., Weld, D. S., & Doorenbos, R. (1997). Wrapper induction for
information extraction. In Proceedings of the International Joint Conference on
Artificial Intelligence(IJCAI’97). pp.729-737.
Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness. Artificial
Intelligence, Vol.118, pp.15-68.
Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional Random Fields:

 34

Probabilistic models for segmenting and labeling sequence data. In Proceedings of the
18th International Conference on Machine Learning (ICML’01). pp.282-289.
Lawrence, S., Giles, C.L., & Bollacker K. (1999). Digital libraries and autonomous
citation indexing. IEEE Computer, Vol.32(6), pp.67-71.
Li, J., & Yu, Y. (2001). Learning to generate semantic annotation for domain specific
sentences. In Proceedings of the Knowledge Markup and Semantic Annotation
Workshop in K-CAP'2001, Victoria, BC.
Li, X., & Liu, B. (2003). Learning to classify texts using positive and unlabeled data.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI'2003). pp.587-592
McCallum, A., Freitag, D., & Pereira, F. (2000). Maximum Entropy Markov Models
for information extraction and segmentation. In Proceedings of the 17th International
Conference on Machine Learning (ICML’00). pp.591-598.
McCallum, A. (2003). Efficiently inducing features of Conditional Random Fields. In
Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence.
pp.403-410.
Morik, K., Brockhausen, P., & Joachims, T. (1999). Combining statistical learning
with a knowledge-based approach - A case study in intensive care monitoring. In
Proceedings of International Conference on Machine Learning (ICML’99).
pp.268-277.
Muslea, I., Minton, S., & Knoblock, C. (1998). STALKER: Learning extraction rules
for semistructured, web-based information sources. In AAAI Workshop on AI and
Information Integration. pp.74-81.
Muslea, I., Minton, S., & Knoblock, C. (1999). Hierarchical wrapper induction for
semistructured information sources. Autonomous Agents and Multi-Agent Systems.
Vol.4, pp.93-114.
Muslea, I. (1999). Extraction patterns for information extraction tasks: A survey. In
Proceedings of AAAI-99: Workshop on Machine Learning for Information Extraction.
Orlando.
Muslea, I., Minton, S., & Knoblock, C. A. (2003). Active learning with strong and
weak views: A case study on wrapper induction. In Proceedings of the International
Joint Conference on Artificial Intelligence(IJCAI). Acapulco, Mexico.
Ng, H. T., Lim, C. Y., Koo, J. L. T. (1999). Learning to Recognize Tables in Free Text.
In Proceedings of the 37th Annual Meeting of the Association for Computational
Linguistics on Computational Linguistics (ACL’99). pp. 443-450.
Nocedal, J., & Wright, S. J. (1999). Numerical optimization. New York, USA:
Springer press.
Peng, F. (2001). Models for Information Extraction. Technique Report.
Peng, F., & McCallum, A. (2004). Accurate information extraction from research
papers using Conditional Random Fields. In Proceedings of HLT-NAACL. pp.
329-336.
Pinto, D., McCallum, A., Wei, X., & Croft, W. B. (2003). Table Extraction Using
Conditional Random Fields. In Proceedings of the 26th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’03).

 35

pp. 235-242.
Ramshaw, L. A., & Marcus, M. P. (1995). Text chunking using transformation-based
learning. In Proceedings of Third Workshop on Very Large Corpora, ACL. pp.67-73.
Ratnaparkhi, A. (1998). Unsupervised Statistical Models for Prepositional Phrase
Attachment. In Proceedings of COLING ACL’98. pp.1079-1085. Montreal, Canada.
Riloff, E. (1993). Automatically Constructing a Dictionary for Information Extraction
Tasks. In Proceedings of the Eleventh National Conference on Artificial Intelligence.
pp.811-816.
Riloff, E. (1996). Automatically Generating Extraction Patterns from Untagged Text.
In Proceedings of the Thirteenth National Conference on Artificial Intelligence.
pp.1044-1049.
Riloff, E., & Jones, R. (1999). Learning Dictionaries for Information Extraction by
Multi-Level Bootstrapping. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence. pp.474-479.
Roth, D., & Yih, W. (2004). A linear programming formulation for global inference in
natural language tasks. In Proceedings of the Eighth Conference on Computational
Natural Language Learning (CoNLL-2004) . pp.1-8. Boston, MA.
Schölkopf B., Burges, C. J. C., & Smola A. J. (1999). Advances in kernel methods:
Support vector learning. MA: MIT Press.
Sha, F., & Pereira, F. (2003). Shallow parsing with Conditional Random Fields. In
Proceedings of Human Language Technology, NAACL. pp.188-191.
Shapire, R. E. (1999). A brief introduction to Boosting. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI-1999). pp.1401-1405.
Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the
agonizing pain. from http://www-2.cs.cmu.edu/.jrs/jrspapers.html#cg.
Siefkes, C., & Siniakov, P. (2005). An overview and classification of adaptive
approaches to information extraction. Journal on Data Semantics IV. Berlin, Germany:
Springer.
Soderland, S., Fisher, D., Aseltine, J., & Lehnert, W. (1995). CRYSTAL: Inducing a
conceptual dictionary. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence (IJCAI’95). pp.1314-1319.
Soderland, S. (1999). Learning information extraction rules for semi-structured and
free text. Machine Learning. Boston: Kluwer Academic Publishers
Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random
fields: factorized probabilistic models for labeling and segmenting sequence data. In
Proceedings of ICML’2004. pp.783-790.
Sutton, C., & McCallum, A. (2005). An introduction to Conditional Random Fields
for relational learning. In Getoor, L., & Taskar, B. (Eds.), Statistical Relational
Learning, forthcoming book.
Tang, J., Li, H., Cao, Y., & Tang, Z. (2005). Email Data Cleaning. In Proceedings of
SIGKDD’2005. pp.489-499. Chicago, Illinois, USA.
Tang, J., Li, J., Lu, H., Liang, B., & Wang, K. (2005). iASA: Learning to Annotate the
Semantic Web. Journal on Data Semantic IV (pp. 110-145). New York, USA:
Springer Press.

 36

Tang. J., Hong, M., Zhang, J., Liang, B., and Li, J. (2006). A New Approach to
Personal Network Search based on Information Extraction. In Proceedings of the first
International Conference of Asian Semantic Web (ASWC). To appear.
Tang, J., Hong, M., Li, J., & Liang, B. (2006). Tree-structured conditional random
fields for semantic annotation. In Proceedings of 5th International Conference of
Semantic Web (ISWC’2006), pp.640-653.
Taskar, B., Guestrin, C., & Koller, D. (2003). Max-margin markov networks. In
Neural Information Processing Systems 2003.
Tetko, I.V., Livingstone, D.J., & Luik, A.I. (1995). Neural network studies. 1.
Comparison of overfitting and overtraining. Journal of Chemical Information and
Computer Sciences, Vol.35, pp.826-833.
Tjong Kim Sang, E. F., & Buchholz, S. (2000). Introduction to the CoNLL-2000
shared task: Chunking. In Proceedings of CoNLL-2000, pp.127-132.
Vapnik, V. (1998). Statistical Learning Theroy. Springer Verlage, New York, 1998
Vapnik V. (1999). The Nature of Statistical Learning Theory. Springer Verlag, New
York, 1999.
Wallach, H. (2002). Efficient training of Conditional Random Fields. Master thesis.
University of Edinburgh, USA.
Wang, Y., & Hu, J. (2002). A Machine Learning based Approach for Table Detection
on the Web. In Proceedings of the 11th International World Wide Web Conference
(WWW’02). pp. 242-250. Honolulu, Hawaii, USA.
Wainwright, M., Jaakkola, T., & Willsky, A. (2001). Tree-based reparameterization for
approximate estimation on graphs with cycles. In Proceedings of Advances in Neural
Information Processing Systems (NIPS'2001). pp.1001-1008.
Zelenko, D., Aone, C., & Richardella, A. (2003). Kernel methods for relation
extraction. Journal of Machine Learning Research, Vol.3, 1083-1106.
Zhang, L., Pan, Y., & Zhang, T. (2004). Recognizing and Using Named Entities:
Focused Named Entity Recognition Using Machine Learning. In Proceedings of the
27th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR’04). pp.281-288.
Zhu, J., Nie, Z., Wen, J., Zhang, B., & Ma, W. (2005). 2D Conditional Random Fields
for Web information extraction. In Proceedings of 22nd International Conference on
Machine Learning (ICML2005). pp.1044-1051. Bonn, Germany.

ADDITIONAL READING
Adwait, R. (1996). Maximum Entropy Model for POS tagging. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing. pp.133-142.
Somerset, New Jersey, 1996.
Ahn, D. (2006). The Stages of Event Extraction. In Proceedings of the Workshop on
Annotating and Reasoning about Time and Events. pp. 1–8. Sydney, July 2006.
Allen, J. (1994). Natural Language Understanding (2nd Edition). Addison Wesley.
1994
Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hidden Markov Support Vector

 37

Machines. In Proceedings of the 20th International Conference on Machine Learning
(ICML 2003).
Appelt, D. & Israel, D. (1999). Introduction to Information Extraction Technology. In
Proceedings of IJCAI’99 Tutorial.
Baum, L. E. & Petrie, T. (1966). Statistical Inference for Probabilistic Functions of
Finite State Markov Chains. Annual of Mathematical statistics, 37:1554-1563, 1966.
Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). Exploiting Diverse
Knowledge Sources via Maximum Entropy in Named Entity Recognition. In
Proceedings of the Sixth Workshop on Very Large Corpora New Brunswick, New
Jersey.
Bunescu, R.C. & Mooney, R.J. (2004). Collective Information Extraction with
Relational Markov Networks. In Proceedings of ACL’2004.
Cafarella, M.J., Downey, D., Soderland, S., & Etzioni, O. (2005). KnowItNow: Fast,
Scalable Information Extraction from the Web. In Proceedings of HLT/EMNLP’2005.
Chieu, H.L. (2002). A Maximum Entropy Approach to Information Extraction from
Semi-Structured and Free Text. In Proceedings of the Eighteenth National Conference
on Artificial Intelligence (AAAI’2002). pp.786-791.
Collins, M. (2002). Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing(EMNLP’2002).
pp.1-8, July 06, 2002.
Dietterich, T. (2002). Machine Learning for Sequential Data: A Review. In
Proceedings of the Joint IAPR International Workshop on Structural, Syntactic, and
Statistical Pattern Recognition. pp. 15–30. 2002. Springer-Verlag.
Downey, D., Etzioni, O., & Soderland, S. (2005). A Probabilistic Model of
Redundancy in Information Extraction. In Proceedings of 22th International Joint
Conference on Artificial Intelligence (IJCAI’2005). pp. 1034-1041.
Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998.
Eikvil, L. (1999). Information Extraction from World Wide Web - A Survey. Rapport
Nr. 945, July, 1999.
Embley, D.W. (2004). Toward Semantic Understanding - An Approach Based on
Information Extraction. In Proceedings of the Fifteenth Australasian Database
Conference, 2004.
Freitag, D. (1998). Machine Learning for Information Extraction from Online
Documents. PhD thesis, School of Computer Science. Carnegie Mellon University.
Freitag, D. & McCallum, A. (2000). Information Extraction with HMM Structures
Learned by Stochastic Optimization. In Proceedings of the Sixteenth National
Conference on Artificial Intelligence (AAAI’2000).
Grishman, R. & Sundheim, B. (1996). Message Understanding Conference –6: A
Brief History. In Proceedings of the 16th International Conference on Computational
Linguistics, Copenhagen, June 1996.
Hu, Y., Li, H., Cao, Y., Meyerzon, D., Teng, L., & Zheng, Q. (2006). Automatic
Extraction of Titles from General Documents using Machine Learning. Information

 38

Processing and Management. pp.1276-1293, 2006
Huffman, S.B. (1995). Learning Information Extraction Patterns from Examples. In
Proceedings of Learning for Natural Language Processing’1995. pp. 246-260.
Jackson, P. & Moulinier, I. (2002). Natural Language Processing for Online
Applications. John Benjamins, 2002.
Klein, D. & Manning, C. (2002). Conditional Structure Versus Conditional Estimation
in NLP Models. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP’2002), Philadelphia.
Laender, A.H.F., Ribeiro-Neto, B.A., da Silva, A.S., & Teixeira, J.S. (2002). A Brief
Survey of Web Data Extraction Tools . Journal of ACM SIGMOD Record, 2002.
Leek, T.B. (1997). Information Extraction Using Hidden Markov Models. M.S. thesis.
Moens, M. (2006). Information Extraction: Algorithms and Prospects in a Retrieval
Context. Springer press
Li, Y., Bontcheva, K., & Cunningham, H. (2005). Using Uneven-Margins SVM and
Perceptron for Information Extraction. In Proceedings of Ninth Conference on
Computational Natural Language Learning (CoNLL-2005). pp.72-79
Manning, C., & Schutze, H. (1999). Markov Models. In Book: Foundations of
Statistical Natural Language Processing. The MIT Press. 1999.
Pazienza, M.T. (1999). Information Extraction : Towards Scalable, Adaptable Systems.
Springer press.
Punyakanok, V. & Roth, D. (2001). The Use of Classifiers in Sequential Inference. In
Proceedings of NIPS’01. pp.995-1001.
Rabiner, L. A. (1989). Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. In Proceedings of the IEEE’1989.
Shawe-Taylor, J. & Cristianini, N. (2000). Introduction to Support Vector Machines.
Cambridge University Press, 2000
Skounakis, M., Craven, M., & Ray, S. (2003). Hierarchical Hidden Markov Models
for Information Extraction. In Proceedings of the 18th International Joint Conference
on Artificial Intelligence, Acapulco, Mexico. Morgan Kaufmann,2003.
Z. Zhang. (2004). Weakly-Supervised Relation Classification for Information
Extraction. In Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management (CIKM’2004).pp581-588.

1 In machine learning, usually a learning algorithm is trained using some set of training
examples. The learner is assumed to reach a state where it will also be able to predict the
correct output for other examples. However, especially in cases where learning was
performed too long or where training examples are rare, the learner may adjust to very
specific random features of the training data, that have no causal relation to the target function.
In this process of overfitting, the performance on the training examples still increases while
the performance on unseen data becomes worse (Tetko, 1995).

