Web Service Annotation Using Ontology Mapping

Zhang Duo, Li Juan-Zi, Xu Bin
Department of Computer Science and Technology, Tsinghua University, P.R.China, 100084
zhang-d@mails.tsinghua.edu.cn, ljiz@keg.cs.tsinghua.edu.cn, xubin@tsinghua.edu.cn

Abstract

Addressed in this paper is the issue of semantic
annotation on Web services. As the popularity of Web
services increases, automated discovery and
composition of relevant Web services are more and
more desired. However, current Web service standards,
such as WSDL, are not rich enough to fulfill these
tasks, because they cannot specify the semantics in the
process of discovery and composition. Thus it is
necessary to describe Web services more semantically.
Now, OWL is the standard ontology language, and it
provides powerful features for expressing such
semantics on Web services. In this paper, we describe
an approach to annotate Web services with OWL
ontology. We formalize the annotation as a process of
translating XML schema into an ontology in OWL,
mapping this temporary ontology with shared
ontologies and generating a semantic description of
Web Services with the mapping result.

1. Introduction

Web services, which describe a standard way for
integrating Web-based applications, are used as one of
the most important means for businesses to
communicate with each other (B2B) and to
communicate with clients (B2C). Several XML based
standards have been proposed to describe Web
services. For example, Web Service Description
Language (WSDL) has proved very useful in
describing the interface of Web services and has been
used extensively by industry.

With the growing popularity of Web Services,
automated discovery and composition of Web services
are highly desirable. However, WSDL is mainly
focusing on operational and syntactic details for
implementation and execution of Web services. The
lack of semantics in WSDL makes it not sufficient to
satisfy the requirement of Web service composition

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

and also limits the discovery mechanism of relevant
Web services merely on keyword-base search.

Semantic Web, in which information is given
explicit meaning, is a vision for the future of the Web
making it easier for machines to automatically process
and integrate information available on the Web [1]. In
Semantic Web, ontologies comprising of concepts with
their relationships are the basis for shared
conceptualization of a domain. Related researches
show that describing Web services with ontologies will
enable better discovery and easier composition of Web
services [10, 15, 17]. For example, we can use
ontology concepts as queries to search Web services.
This will be more efficient than just using keywords as
queries, because the description and relationship of
concepts are explicitly declared in ontologies.

Several approaches are suggested to describe Web
services with ontologies [9, 11]. OWL-S [2] is one of
the ontology based languages for describing Web
services. It proposes to define a set of basic classes and
properties for declaring and describing Web services.
OWL-S tries to cover the description of Web services
in a wide sense, not focus on a particular application
domain. However, finding relevant ontologies
manually to describe Web services will be a
troublesome work, since users have to browse through
several domains and a large number of concepts. A
classification method is described in [10]. It uses
machine learning algorithms to help users simplify the
search for relevant ontologies. Another approach aims
on adding semantics to current Web service standards
[17], such as WSDL and UDDI, to create a better

framework for Web service discovery and composition.

They propose to annotate WSDL with relevant
ontologies and then combine them to a new standard
called WSDL-S. To find the relevant ontologies, they
use a media structure called SchemaGraph to facilitate
the matching between XML schema and ontology [15].
Our approach also aims to enrich WSDL with
semantics using ontologies described in OWL. The
differences between our approach and [15] are:

YF]',F.

COMPUTER
SOCIETY

(1) We use a more direct way for the matching
between XML schema and ontology. We find that the
format of XML schema provides a basis to generate
ontology concepts. For example, the relationship
between a complexType and its child elements in
XML schema is very similar to the relationship
between a class and its properties in OWL ontology.
This leads us to define several rules on translation
from XML schema to OWL ontology. After the
translation, the matching between XML schema and
ontology becomes the mapping between two
ontologies.

(2) We do not introduce a new standard for
Semantic Web service. Instead, we generate OWL-S
description for Web services from WSDL using our
ontology mapping result.

The rest of this paper is organized as follow: We
start by reviewing some related work in section 2. In
section 3, we outline the architecture of our approach.
Section 4 describes the translation from XML schema
to OWL ontology. The method of mapping new
ontology with existing shared ontologies will be
discussed in Section 5. The approach of OWL-S
generation will be described in Section 6. Section 6
presents our experiment and final results. We conclude
in Section 8.

2. Related Work

Describing Web services using an upper ontology is
an active research field currently. Another exciting
research field is ontology alignment which aims to

solve the heterogeneity problems on the Semantic Web.

Our work combines these two fields together to give a
method which annotates Web services with semantics.
In this section, we explore some related works in these
two fields since both of them are very important.

2.1 Semantic Web services

OWL-S [2] is one of the ontology based languages
for Semantic Web services. It builds on OWL.

OWL (Web Ontology Language) is a semantic
markup language for publishing and sharing ontologies
on the Web [1]. It can be used to describe classes and
relations between them that are inherent in Web
document and applications. Now, OWL is a
component of the Semantic Web activity.

OWL-S aims to realize Semantic Web services by
providing appropriate semantics enriched descriptions
to Web services. It is an ontology of services and its
main three parts are: ServiceProfile, ServiceModel,
and ServiceGrounding. OWL-S proposes to fulfill a set

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

of work, such as Web service discovery, invocation
and composition. Our approach generates an OWL-S
description for Web service from the current Web
service standard WSDL.

2.2 Ontology Alignment

Ontology alignment has many usages, such as
transform one source into another, creating a set of
rules between the ontologies, or displaying the
correspondences. Our work can also be viewed as an
application of ontology alignment. There are several
approaches have been studied in this area. Anchor-
PROMPT [12, 13] is an ontology merging and
alignment tool with a sophisticated prompt mechanism
for possible matching terms. It uses a string-based
algorithm and refines the results based on users’
feedback. Some other studies focus on the structure of
the ontology entities. In [16], the constraints of
properties, such as range, cardinality and transitivity,
are used to facilitate the similarity calculation between
two ontologies. More structure information is
considered in [3], which uses a method focusing on
entities’ positions in the path from the root to the
entities. Like in many other fields, machine learning
methods are also useful in ontology alignment. Some
techniques are discussed in [4, 18]. In [5, 6], a machine
learning method GLUE is suggested. It first generates
a similarity matrix based on the probability which is
learned from the distributions of classes in each
ontology. Then it produces an alignment from the
similarity matrix by using heuristic rules for choosing
the more likely correspondences. Compared with these
methods discussed above, our mapping method is
mainly based on morphological and local structural
similarities of two ontologies.

3. Architecture

Our approach can be divided into three steps.

® Translate XML schema into a temporary ontology.

® Map this temporary ontology with existing shared
ontologies.

® Preserve the mapping result and use it to generate
OWL-S files from the WSDL file.

Figure 1 shows an overview of the architecture. The
translation in the first part is based on several rules
which make a one-to-one correspondence between
XML schema elements and OWL ontology concepts.
The structure of the XML schema will be reserved.
Elements’ names with the targetNamespace of the
XML schema will be translated into URIs in OWL

YF]',F.

COMPUTER
SOCIETY

ontology. The result of the translation is a temporary
OWL ontology.

In the second step, we make use of both
morphological and structural similarity for finding the
mapping between the temporary ontology and existing
shared domain ontology (we use existing ontology for
short hereafter). The result of the second step is a
mapping file. In the mapping file, every temporary
ontology concept will make a pair with its matching
concept in existing ontology. The result can also be
viewed as the mapping between XML schema and
existing ontology, since the translation in the first step
is a 1:1 correspondence.

In the third step, an OWL-S description of the Web
service will be generated from the WSDL file using
the mapping result. The description contains three
parts: ServiceProfile, ServiceModel, and
ServiceGrounding. We also preserve the mapping file
as one part of the final result.

Temporary
Ontology
Translation ~
XML Schema & %
\ \
N
WSDL Mapping W
-~
Existing
Ontology

Mapping File

OWL-S

Final Result

Figure 1.0verview of architecture

4. XML schema to Ontology

XML schema and OWL ontology share a common
foundation: a hierarchy structure. The translation in
our first step is mainly based on this foundation. To
make the description more clearly, we first define
some notations. In XML schema, the elements which
appear as the direct children of schema are called
global elements. This is the same as the definition in
[7]. For the other elements, we called them local
elements. Sub-elements of a complexType indicate the
direct child elements of that complexType. And a
complexType is called the super-structure of its sub-
elements. Our translation rules are listed as follows:

Rule 1. the targetNamespace of XML Schema is
translated into the namespace of OWL

This rule ensures that all the names of elements in
XML schema can be used directly in the OWL
ontology. Note that if there is some naming conflict,
we can add different numbers after each name to
distinguish them.
Rule 2. complexType is translated into owl:Class

This is the most general rule and should be used
whenever there is a complexType in the schema.
Rule 3. simpleType is translated into owl:Class

SimpleType in XML schema has various forms,
such as list types, union types, a form of enumeration
and etc. All of these forms indicate that simpleType
has a complex structure and should be translated into
an owl:Class. In Fig. 2, we give an example of how to
translate a simpleType in form of enumeration into an
owl:Class in form of owl:oneOf. The original form of
“ForecastDays” is shown in Fig. 4. Each enumeration
value of the simpleType is translated into an individual
of owl:Thing.

<owl:Class rdlID="ForecastDays">
<owl:equivalentClass=
<owl:Class>
<owl:oneOf rdf.parseType="Collection"=
<owl:Thing rdf:ID="Day1"(>
<owl:Thing rdf:ID="Day2"/=
<{owl:oneOf=
<fowl:Class=>
<jowl:equivalentClass=>
=fowl:Class=>

Figure 2.Enumerated class from simpleType

Rule 4. global element is also translated into
owl:Class

Since a global element always has an anonymous
type of complexType or simpleType, it should also be
translated into an owl:Class which ID is the element’s
name.

<owl:ObjectPraperty rdf.ID="DayToBroadcasl">
<rdfs:range rdf:resource="Daylnfo"/>
<rdfs:domain>
<owl:Class>
<owk:unionOf rdf:parseType="Collection™>
=owl:Class rdf:about="GetWeatherByZip"/=
<owl:Class rdf:about="GetWeatherByCity"/>
<fowl:unionOf>
<fowl.Class>
</rdfs.domain>
<fowl:ObjectProperty>
<owl:DatatypeProperty rdfi:ID="City">
<rdfs:range rdf:resource="http:/www.w3.0rg/2001/XMLSchema#istring"/>
<rdfs:domain rdf:resource="Get\WeatherByCity"/>
</owl:DatatypeProperty=

Figure 3.Properties in the translation

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

Rule 5. local element with a type of simple type
which is built in to XML Schema is translated
into owl:DatatypeProperty

In Fig. 4, the local element “City” is translated into
a DatatypeProperty shown in Fig. 3. The type of the
local element becomes the range of the
DatatypeProperty, and the super-structure of the local
element becomes the domain of that DatatypeProperty.
Rule 6. local element with a type of complex type
definition in XML Schema, such as complexType
and simpleType, is translated into
owl:ObjectProperty

The element “DaylInfo” in Fig. 4 is one example
under this rule. One characteristic of the element is that
it has two super-structures. When it is translated into
an owl:ObjectProperty, its domain should be an
owl:unionOf two classes as shown in Fig. 3.

<s:5chema elementFormDefault="qualified"
targetNamespace="http:/fkeq.cs tsinghua.edu.cn/™=
=s:element name="GetWeatherByZip">
<sicomplexType>
<s:sequence>
<g:element minOccurs="0" maxOccurs="1"
name="PostalCode" type="s:string" /=
<s:glement name="DayToBroadcast™ type="tns:Daylnfo” />
</s:sequence=
</s:icomplexType=
</s:element>
=s:element name="GetWeatherByCity">
=g:complexType=
<s:sequence>
<s:element name="City" type="s:string" />
<g:element name="DayToBroadcast™ lype="tns.Daylnfo" />
</s:sequence=
=/s:icomplexType=
<is:element=>
<s:complexType name="Daylnfa">
=s:seqUEnce>
<s:glement name="Day" type="s:string" />
<s:glement name="Date" type="s:string" />
</s:sequence=
</s:complexType=
=s:simpleType name="ForecastDays">
=srestriction base="s:string">
<g:enumeration value="Day1" />
<g:enumeration value="Day2" />
</s.restriction=
<fs:simpleType=
=/s:schema=

Figure 4.Example in XML Schema

Rule 7. the translation of attribute is the same as
local elements

This rule indicates that both the attribute and local
element can be viewed as properties of class.
Rule 8. local element with an anonymous type is
translated into owl:Class

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

The element’s name will be the ID of that

owl:Class. An anonymous type always has a complex
structure and contains some semantic information. So
this translation is necessary.
Rule 9. minOccurs and maxOccurs are translated
into owl:minCardinality and owl:maxCardinality
respectively, and add these restriction to the
relevant owl:Class

Our translation is mainly based on these general
rules. According to these rules, the translation makes a
one-to-one correspondence between the XML schema
and OWL ontology on both the morphological and
structural aspects. We will show that such a
correspondence plays an important role in next two
steps.

5. Mapping Ontologies

Ontology mapping, which is also known as

ontology alignment, is an active topic in Semantic Web.

The ontology alignment problem can be described as:
given two ontologies each of which describes a set of
discrete entities (classes, properties, etc.), find the
relationships holding between these entities.

For every two entities, our ontology mapping
method concerns two aspects of them: terminology
similarity and structural similarity. Terminology
similarity is to compare the morphological similarity
between the names of two entities by a measure
function. In our approach, we use Levenstein distance
as the measure function. The structural similarity of
two entities will be calculated based on the
terminology similarity of their relative entities. Then
we give a similarity score for the two entities which is
calculated by the weighted average of their
terminology similarity and structural similarity.

5.1 Terminology Similarity

We use edit distance to calculate the terminology
similarity of entities. Specially, we use Levenstein
distance here.

Generally speaking, an edit distance of two objects
is the minimal cost of operations applied to one of the
objects for obtaining the other. For edit distance on
strings that transform s to ¢, the operation set Op will

be:
Copy a character from s over to ¢
Delete a character in s
Insert a character in ¢
Substitute one character for another
A formal definition of edit distance is:

YF]',F.

COMPUTER
SOCIETY

Definition. Given a set Op of string operations, and a
cost function ®: Op — R, such that for any pair of
strings (s,7) , there exist a sequence of operations

which transforms the first one into the second one, the
edit distance J(s,?), is the cost of the less costly
sequence of operations which transform s in ¢
S(s,0)=min 0oy (oper (Z @,,)
iel
Levenstein distance is the edit distance with all
costs to 1. From the definition, we can see that the
lower the value of J(s,) is, the higher similarity will

s and ¢ have. Therefore, we define the function
TermSim(s, t) to calculate the similarity of two strings:

MaxLength(s,t)—(s,t)
MaxLength(s,t)
Here, MaxLength(s,t) represents the max length of

TermSim(s,t) =

strings s and ¢.

Table 1. Terminology similarity of ontologies

important information for ontology mapping. For
example, if the properties of one class have good
matches with the properties of another class, there is a
higher probability that these two classes are to be
mapped.

In our algorithm, we consider the neighbors of each
entity. A neighbor of an entity E is the entity which
has a direct relationship with £. For an owl:Class, its
properties, super classes, sub classes are called its
neighbors. For a property, its domains and ranges are
called its neighbors. The algorithm for calculating
structural similarity of class entities is shown in Table
2. The algorithm for properties is similar.

Table 2. Algorithm for structural similarity

For each class, € TO
For each class, € EO
Output TermSim(name(class,), name(classj));
For each DatatypeProperty DP € TO
For each DatatypeProperty DP e EO
Output TermSim(name(DF,), name(DP,));
For each ObjectProperty OP € TO
For each ObjectProperty OP € EO
Output TermSim(name(OF,), name(OPj));

For each class, e TO

For each class/ e EO
If(p<q)
Forevery {i,iy,....i } < {1,2,...q}

StructSim(class, , classj)

= max(Y, TermSim(NT, , NE,)/ p;

Else
For every {i,i,,....i } = {1,2,.., p}

StructSim(class. , class .)
i J

= max(z TermSim(NY}k »NE,)/ q;

k=1

Output StructSim(class,, class ;);

The algorithm for calculating terminology similarity
of temporary ontology (TO) and existing ontology (EO)
1s described in Table 1. In the table, we use
Name(classT) to denote the name of class T .

The algorithm calculates the terminology similarity
of every two entities of belong to same category. For
example, each class in temporary ontology will be
compared with all the classes in the existing ontology
but not compared with the properties in the existing
ontology.

5.2 Structural Similarity
Ontology is not a set of entities separately but an

integrity of entities with their relationship. So we
consider the structure information is another kind of

We use StructSim(u,v) to identify the structural

similarity of two entities # and v. We also use TO to
identify temporary ontology and EO for existing

ontology here. The neighbors of class, € TO are the

set {NTI,NTZ,...,NTP} and the neighbors of

classj e EO are the set {NEI,NEZ,...,NEq} .

The algorithm gives the best terminology similarity
among the neighbors of two entities as their structure
similarity. We can also see that the algorithm just
focus on a local structure of the ontology, since it only
concerns the neighbors of each entity. An example of
structure similarity calculation is given in Table 3. The
ObjectProperty DayToBroadcast in the example is
described in the Fig. 3 and the ObjectProperty
DayForcast is defined in an existing ontology. For all
the matches between neighbors of DayToBroadcast
and DayForcast, the best match which has the

YF]',F.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)

COMPUTER
0-7695-2438-9/05 $20.00 © 2005 IEEE

SOCIETY

maximum sum of terminology similarities is {(DaylInfo,
Date), (GetWeatherByZip, WorldWeather),
(GetWeatherByCity, DailyWeatherReport)} as shown
in Table 3.

Table 3. Example of structure similarity

Temporary Neighbors Best neighbors Existing
Entity match Entity

DayTo DaylInfo 0.286 | Date Day
Broadcast | GetWeather | 0.333 | World Forcast

ByZip Weather

GetWeather | 0.389 | Daily

ByCity Weaterh

Report

StructSim: (0.286 + 0.333 + 0.389) / 3 =0.336

5.3 Similarity score

The similarity score of two entities # and v is
calculated as the weighted average of their terminology
similarity and structural similarity. The formula is
defined as:

SimScore(u,v) = A, * TermSim(u,v) + A, * StructSim(u, v)
where A + A, =1. In our approach, we give A, a value

of 0.6 and give A, a value of 0.4.

For each entity £ in a temporary ontology, the
similarity scores with all entities in the existing
ontology will be calculated and ranked. The entity in
the existing ontology which has the highest similarity
score with E is selected as the matching entity for E.

Fig 5. shows an example of mapping results. The
snippet gives a pair of mapping entities and their
similarity score.

<map>
<Cell>
<entity1 rdf.resource="Lacation'/>
=entity2 rdf:resource="LocationCode'>
=measure rdf:datatype="http://www.w3.0rg/2001/XMLSchema#float’>
0.8574589074186623
</measure>
<iCell>
</map>

Figure 5. Example of mapping result

6. OWL-S generation

OWL-S uses three types of knowledge to describe a
Web service: ServiceProfile, ServiceModel, and
ServiceGrounding. ServiceProfile is used to describe
what a Web service does, ServiceModel describes how
it works and ServiceGrounding is used to specify how
to access it.

WSDL OWL-S

iz B B
| T e e 1
I |
I operation atomic process |
l ¢ y |
I |
I I
| |

binding : : ontology

I |
I |
: message C {) input/output :
oseg s smenme Seen o I e,

e S/ o o/

Figure 6. Relationship between WSDL and OWL-S

Fig. 6 shows the relationship between WSDL and
OWL-S. WSDL and OWL-S share a number of
common points in describing a Web service process.
WSDL uses operations and messages to describe a
Web service process, while OWL-S ServiceModel
uses atomic processes and inputs/outputs to describe
the process. Though their names are different, their
effects are the same.
There are two main differences between WSDL and
OWL-S:
1. WSDL uses XML Schema to characterize the
input and output messages of Web services, whereas
OWL-S uses OWL classes.
2. OWL-S has no means to express the binding
information that WSDL provides.
The first difference is the reason why WSDL lacks
of semantics. Our translation and ontology mapping
method fill up this gap, since we can find OWL classes
which match with the XML schema types to describe
the input and output messages instead of XML schema
types themselves For the second difference, [2]
suggests to use WSDL as the grounding mechanism
for OWL-S. The basic idea is: First, it uses an owl-s-
parameter attribute to describe a part of message in
WSDL instead of #type. Then, in ServiceGrounding it
uses a WSDLGROUNDING class, which is a subclass
of Grounding, to refer the relevant construct in WSDL.
Based on all of these similarities and ideas, we
define certain rules for the generation of OWL-S
description of Web services:
® A portType in WSDL will
ProcessModel in ServiceModel.

® An operation in WSDL will become an atomic
process in ServiceModel.

® The input and output messages of an operation
will become the inputs and outputs of an atomic
process respectively

® The mapping result of a message part’s type will

become a

become the owl-s-parameter for that message part.

YF]',F.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)

COMPUTER
0-7695-2438-9/05 $20.00 © 2005 IEEE

SOCIETY

According to these rules, the third step of our
approach completes the generation of ServiceModel
and ServiceGrounding of OWL-S. It also covers a part
of ServiceProfile, that is the input and output
information of the Web service. The rest part of
ServiceProfile, such as contactinformation and
qualityRating, will be added manually.

Our final result also preserves the mapping result,
since it includes all the mapping information not only
for classes but also for properties. We consider it very
useful for future work, such as the service matching
mechanism in service discovery and service
composition.

7. Experiment

In the first two steps, our approach completes a
process of mapping XML schema with ontology
concept. The first step makes a one-to-one
correspondence between XML schema and temporary
ontology. The second step finds the mapping between
the temporary ontology and existing ontologies. In this
section, we will show the ability of our approach by
presenting some of our experiment results.

7.1 Dataset

For the number of our domain specific ontologies is
limited, we just focus on two domains: travel domain
and weather domain. Our corpus is made up of 49 Web
services of travel domain and 16 Web services of
weather domain. All these files are selected from a
group of totally 856 Web services from Amazon.com
and XMethods.com. We also create a travel domain
ontology and a weather domain ontology according to
prior knowledge. To make our ontologies more general,
we select 20 files randomly from all the 65 Web
service files to modify our ontologies (5 from weather
domain and 15 from travel domain). We call these files
modification files. The other 45 files are called
independent files. Before the experiment, we first
annotate all the service files manually. For each
element in the XML schema, we find the most
appropriate concept in the domain ontology as the
mapping with that element.

7.2 Evaluation Measures

We evaluate our results by conducting the
measurement of precision. It is defined as follow:

correct discovery mapping

Precision =
total number of mapping

Since each element in the XML schema has exactly
one correct mapping, we only use precision here.

7.3 Experiment Result
The experiment results are shown in Table 4.

Table 4. Mapping result in terms of precision(%)

Travel Domain Weather Domain
Modification 905 96.4
files
Independent 78.6 795
files
Average 83.6 86.5

The average result is the experiment on both the
modification files and independent files. From the
result we can see that:

(1) The modification files have more precision than the
independent files. To make our ontologies more
general, we use the modification files to modify the
ontologies making sure that for each XML schema
element in modification files there really exits an
ontology concept matched with that element.
Otherwise, we add or change some structures of the
ontologies. So the modification files have more
similarity with the ontologies after modified. For the
independent files, their XML schema structures and
elements’ names are much more different from the
ontologies, so the precision is not high.

(2) The result of weather domain is better than the
travel domain. That is because the weather domain
ontology is smaller than the travel domain, and the
weather Web services are very similar with each other.
(3) The differences between the results of modification
files and independent files also show that if the
ontology is created more general, the precision will be
improved.

7.4 Complexity Analysis

Here we give the computational analysis of our
ontology mapping method.

Suppose the numbers of entities in the temporary
ontology and the existing ontology are m and »
respectively.

In section 5.1, the computational complexity of

Levenstein distance is O((string's length)’) . So the
total computational complexity of the first part is
O(mn(string's length)’) . In section 5.2, the structural

similarity calculation of two entities can be viewed as a
bipartite matching problem. The computational

YF]',F.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)

COMPUTER
0-7695-2438-9/05 $20.00 © 2005 IEEE

SOCIETY

complexity of the second part is

O(mn(neighbor's number)’) . In section 5.3, since the

computational complexity of the ranking algorithm for
every entity of temporary ontology is O(nlogn), the

computational complexity of this part is O(mnlogn) .

The total computational complexity of our ontology
mapping method is the sum of the three parts above.
One advantage of our approach is that our mapping
method can be improved easily as the study of
ontology alignment further developed. We are
currently working on some other mapping methods
which combine advantages of other methods and ours.

8. Conclusion and Future work

In this paper, we discuss a process of annotating
Web services with semantics. First, we define several
rules to translate a XML schema to ontology in OWL.
Then we map the ontology with existing ontologies.
Finally we generate an OWL-S description for the
Web service using the mapping result. We also carry
out experiments to test the mapping method and
compare the results. We plan to further improve both
the accuracy and efficiency of the annotation as our
future work. One attribution of our work is that we
give a method which maps an XML schema with an
ontology. We find the mapping result contains large
amounts of information. This leads us to a further
study on how to use such information on Web service
discovery and composition.

9. References

[1] OWL: http://www.w3.0org/TR/2004/REC-owl-features-
20040210/

[2] OWL-S: Semantic markup for Web Services, version 1.1,
available at http://www.daml.org/services/owl-s/1.1/

[3] T. L. Bach, R. Dieng-Kuntz, and F. Gandon, “On
ontology matching problems (for building a corporate
semantic web in a multi-communities organization)”, In Proc.
of ICEIS 2004, Port, Portugal, 2004.

[4] J. Berlin and A. Motro, “Database schema matching
using machine learning with feature selection”, I14th
International conference on advanced information system
engineering (CAiSE), Toronto, Ontario, Canada, 2002,
pp.452-466

[5] A. Doan, P. Domingos, and A. Halevy, “Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach”, In Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data, 2001

[6] A. Doan, J. Madhavan, P. Domingos and A. Halevy,
“Learning to Map Between Ontologies on the Semantic
Web”, WWW2002, Honolulu, Hawaii, USA, May 2002

[7] D. C. Fallside and P. Walmsley, XML Schema Part 0:
Primer Second Edition, available at
http://www.w3.org/TR/xmlschema-0/

[8] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML
Schema to OWL”, Web Engineering - 4th International
Conference (ICWE 2004), Munich, Germany, July 2004, pp.
354-358

[9] R. Herzog, H. Lausen, D. Roman, P. Zugmann (eds.):
WSMO Registry. WSMO working draft, available at
http://www.wsmo.org/2004/d10/v0.1/, 2004

[10] A. Hess and N. Kushmerick, “Learning to Attach
Semantic Metadata to Web Services”, Proceeding of the 2nd
International Semantic Web Conference (ISWC 2003),
Florida, USA, Oct. 2003, pp. 258-273

[11] R. Lara, D. Roman, A. Polleres and D. Fensel, “A
Conceptual Comparison of WSMO and OWL-S”, available
at http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/

[12] N. F. Noy and M. Musen, “PROMPT: Algorithm and
Tool for Automated Ontology Merging and Alignment”,
Proceedings of the National Conference on Artificial
Intelligence (AAAI 2000), Austin, Texas, USA, 2000, pp.
450-455

[13] N. F. Noy and M. Musen, “Anchor-PROMPT: Using
Non-local Context for Semantic Matching”, In Proceedings
of IJCAI 2001 Workshop on Ontology and Information
Sharing, Seattle, Washington, USA, 2001, pp.63-70.

[14] M. Paolucci, N. Sriivasan, K. Sycara and T. Nishimura,
“Towards a Semantic Choreography of Web Services: from
WSDL to DAML-S”, Proceedings of the International
Conference on Web Services (ICWS 2003), Las Vegas,
Nevada, USA, June 2003, pp. 22-26

[15] A. Patil, S. Oundhakar, A. Sheth and K. Verma,
“METEOR-S Web Service Annotation Framework”,
WWWw2004, New York, USA, pp. 553-562.

[16] E. Rahm and P. A. Bernstein, “A survey of approaches
to automatic schema matching”, The VLDB Journal,
Springer-Verlag, New York, USA, Dec. 2001, pp.334-350.

[17] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,
“Adding semantics to web services standards”, In
Proceedings of the Ist International Conference on Web
Services (ICWS'03), Las Vegas, Nevada, USA, 2003

[18] G. Stumme and A. Midche, “FCA-merge:
bottom-up merging of ontologies”, In Proc. 17th IJCAI
Seattle (WA US), 2001, pp. 225-230

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

