
Web Service Annotation Using Ontology Mapping

Zhang Duo, Li Juan-Zi, Xu Bin

Department of Computer Science and Technology, Tsinghua University, P.R.China, 100084

zhang-d@mails.tsinghua.edu.cn, ljz@keg.cs.tsinghua.edu.cn, xubin@tsinghua.edu.cn

Abstract

Addressed in this paper is the issue of semantic

annotation on Web services. As the popularity of Web

services increases, automated discovery and

composition of relevant Web services are more and

more desired. However, current Web service standards,

such as WSDL, are not rich enough to fulfill these

tasks, because they cannot specify the semantics in the

process of discovery and composition. Thus it is

necessary to describe Web services more semantically.

Now, OWL is the standard ontology language, and it

provides powerful features for expressing such

semantics on Web services. In this paper, we describe

an approach to annotate Web services with OWL

ontology. We formalize the annotation as a process of

translating XML schema into an ontology in OWL,

mapping this temporary ontology with shared

ontologies and generating a semantic description of

Web Services with the mapping result.

1. Introduction

Web services, which describe a standard way for

integrating Web-based applications, are used as one of

the most important means for businesses to

communicate with each other (B2B) and to

communicate with clients (B2C). Several XML based

standards have been proposed to describe Web

services. For example, Web Service Description

Language (WSDL) has proved very useful in

describing the interface of Web services and has been

used extensively by industry.

With the growing popularity of Web Services,

automated discovery and composition of Web services

are highly desirable. However, WSDL is mainly

focusing on operational and syntactic details for

implementation and execution of Web services. The

lack of semantics in WSDL makes it not sufficient to

satisfy the requirement of Web service composition

and also limits the discovery mechanism of relevant

Web services merely on keyword-base search.

Semantic Web, in which information is given

explicit meaning, is a vision for the future of the Web

making it easier for machines to automatically process

and integrate information available on the Web [1]. In

Semantic Web, ontologies comprising of concepts with

their relationships are the basis for shared

conceptualization of a domain. Related researches

show that describing Web services with ontologies will

enable better discovery and easier composition of Web

services [10, 15, 17]. For example, we can use

ontology concepts as queries to search Web services.

This will be more efficient than just using keywords as

queries, because the description and relationship of

concepts are explicitly declared in ontologies.

Several approaches are suggested to describe Web

services with ontologies [9, 11]. OWL-S [2] is one of

the ontology based languages for describing Web

services. It proposes to define a set of basic classes and

properties for declaring and describing Web services.

OWL-S tries to cover the description of Web services

in a wide sense, not focus on a particular application

domain. However, finding relevant ontologies

manually to describe Web services will be a

troublesome work, since users have to browse through

several domains and a large number of concepts. A

classification method is described in [10]. It uses

machine learning algorithms to help users simplify the

search for relevant ontologies. Another approach aims

on adding semantics to current Web service standards

[17], such as WSDL and UDDI, to create a better

framework for Web service discovery and composition.

They propose to annotate WSDL with relevant

ontologies and then combine them to a new standard

called WSDL-S. To find the relevant ontologies, they

use a media structure called SchemaGraph to facilitate

the matching between XML schema and ontology [15].

Our approach also aims to enrich WSDL with

semantics using ontologies described in OWL. The

differences between our approach and [15] are:

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

(1) We use a more direct way for the matching

between XML schema and ontology. We find that the

format of XML schema provides a basis to generate

ontology concepts. For example, the relationship

between a complexType and its child elements in

XML schema is very similar to the relationship

between a class and its properties in OWL ontology.

This leads us to define several rules on translation

from XML schema to OWL ontology. After the

translation, the matching between XML schema and

ontology becomes the mapping between two

ontologies.

(2) We do not introduce a new standard for

Semantic Web service. Instead, we generate OWL-S

description for Web services from WSDL using our

ontology mapping result.

The rest of this paper is organized as follow: We

start by reviewing some related work in section 2. In

section 3, we outline the architecture of our approach.

Section 4 describes the translation from XML schema

to OWL ontology. The method of mapping new

ontology with existing shared ontologies will be

discussed in Section 5. The approach of OWL-S

generation will be described in Section 6. Section 6

presents our experiment and final results. We conclude

in Section 8.

2. Related Work

Describing Web services using an upper ontology is

an active research field currently. Another exciting

research field is ontology alignment which aims to

solve the heterogeneity problems on the Semantic Web.

Our work combines these two fields together to give a

method which annotates Web services with semantics.

In this section, we explore some related works in these

two fields since both of them are very important.

2.1 Semantic Web services

OWL-S [2] is one of the ontology based languages

for Semantic Web services. It builds on OWL.

OWL (Web Ontology Language) is a semantic

markup language for publishing and sharing ontologies

on the Web [1]. It can be used to describe classes and

relations between them that are inherent in Web

document and applications. Now, OWL is a

component of the Semantic Web activity.

OWL-S aims to realize Semantic Web services by

providing appropriate semantics enriched descriptions

to Web services. It is an ontology of services and its

main three parts are: ServiceProfile, ServiceModel,

and ServiceGrounding. OWL-S proposes to fulfill a set

of work, such as Web service discovery, invocation

and composition. Our approach generates an OWL-S

description for Web service from the current Web

service standard WSDL.

2.2 Ontology Alignment

Ontology alignment has many usages, such as

transform one source into another, creating a set of

rules between the ontologies, or displaying the

correspondences. Our work can also be viewed as an

application of ontology alignment. There are several

approaches have been studied in this area. Anchor-

PROMPT [12, 13] is an ontology merging and

alignment tool with a sophisticated prompt mechanism

for possible matching terms. It uses a string-based

algorithm and refines the results based on users’

feedback. Some other studies focus on the structure of

the ontology entities. In [16], the constraints of

properties, such as range, cardinality and transitivity,

are used to facilitate the similarity calculation between

two ontologies. More structure information is

considered in [3], which uses a method focusing on

entities’ positions in the path from the root to the

entities. Like in many other fields, machine learning

methods are also useful in ontology alignment. Some

techniques are discussed in [4, 18]. In [5, 6], a machine

learning method GLUE is suggested. It first generates

a similarity matrix based on the probability which is

learned from the distributions of classes in each

ontology. Then it produces an alignment from the

similarity matrix by using heuristic rules for choosing

the more likely correspondences. Compared with these

methods discussed above, our mapping method is

mainly based on morphological and local structural

similarities of two ontologies.

3. Architecture

Our approach can be divided into three steps.

Translate XML schema into a temporary ontology.

Map this temporary ontology with existing shared

ontologies.

Preserve the mapping result and use it to generate

OWL-S files from the WSDL file.

Figure 1 shows an overview of the architecture. The

translation in the first part is based on several rules

which make a one-to-one correspondence between

XML schema elements and OWL ontology concepts.

The structure of the XML schema will be reserved.

Elements’ names with the targetNamespace of the

XML schema will be translated into URIs in OWL

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

ontology. The result of the translation is a temporary

OWL ontology.

In the second step, we make use of both

morphological and structural similarity for finding the

mapping between the temporary ontology and existing

shared domain ontology (we use existing ontology for

short hereafter). The result of the second step is a

mapping file. In the mapping file, every temporary

ontology concept will make a pair with its matching

concept in existing ontology. The result can also be

viewed as the mapping between XML schema and

existing ontology, since the translation in the first step

is a 1:1 correspondence.

In the third step, an OWL-S description of the Web

service will be generated from the WSDL file using

the mapping result. The description contains three

parts: ServiceProfile, ServiceModel, and

ServiceGrounding. We also preserve the mapping file

as one part of the final result.

Figure 1.Overview of architecture

4. XML schema to Ontology

XML schema and OWL ontology share a common

foundation: a hierarchy structure. The translation in

our first step is mainly based on this foundation. To

make the description more clearly, we first define

some notations. In XML schema, the elements which

appear as the direct children of schema are called

global elements. This is the same as the definition in

[7]. For the other elements, we called them local

elements. Sub-elements of a complexType indicate the

direct child elements of that complexType. And a

complexType is called the super-structure of its sub-

elements. Our translation rules are listed as follows:

Rule 1. the targetNamespace of XML Schema is

translated into the namespace of OWL
This rule ensures that all the names of elements in

XML schema can be used directly in the OWL

ontology. Note that if there is some naming conflict,

we can add different numbers after each name to

distinguish them.

Rule 2. complexType is translated into owl:Class
This is the most general rule and should be used

whenever there is a complexType in the schema.

Rule 3. simpleType is translated into owl:Class
SimpleType in XML schema has various forms,

such as list types, union types, a form of enumeration

and etc. All of these forms indicate that simpleType

has a complex structure and should be translated into

an owl:Class. In Fig. 2, we give an example of how to

translate a simpleType in form of enumeration into an

owl:Class in form of owl:oneOf. The original form of

“ForecastDays” is shown in Fig. 4. Each enumeration

value of the simpleType is translated into an individual

of owl:Thing.

Figure 2.Enumerated class from simpleType

Rule 4. global element is also translated into

owl:Class
Since a global element always has an anonymous

type of complexType or simpleType, it should also be

translated into an owl:Class which ID is the element’s

name.

Figure 3.Properties in the translation

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

Rule 5. local element with a type of simple type

which is built in to XML Schema is translated

into owl:DatatypeProperty
In Fig. 4, the local element “City” is translated into

a DatatypeProperty shown in Fig. 3. The type of the

local element becomes the range of the

DatatypeProperty, and the super-structure of the local

element becomes the domain of that DatatypeProperty.

Rule 6. local element with a type of complex type

definition in XML Schema, such as complexType

and simpleType, is translated into

owl:ObjectProperty
The element “DayInfo” in Fig. 4 is one example

under this rule. One characteristic of the element is that

it has two super-structures. When it is translated into

an owl:ObjectProperty, its domain should be an

owl:unionOf two classes as shown in Fig. 3.

Figure 4.Example in XML Schema

Rule 7. the translation of attribute is the same as

local elements
This rule indicates that both the attribute and local

element can be viewed as properties of class.

Rule 8. local element with an anonymous type is

translated into owl:Class

 The element’s name will be the ID of that

owl:Class. An anonymous type always has a complex

structure and contains some semantic information. So

this translation is necessary.

Rule 9. minOccurs and maxOccurs are translated

into owl:minCardinality and owl:maxCardinality

respectively, and add these restriction to the

relevant owl:Class
Our translation is mainly based on these general

rules. According to these rules, the translation makes a

one-to-one correspondence between the XML schema

and OWL ontology on both the morphological and

structural aspects. We will show that such a

correspondence plays an important role in next two

steps.

5. Mapping Ontologies

Ontology mapping, which is also known as

ontology alignment, is an active topic in Semantic Web.

The ontology alignment problem can be described as:

given two ontologies each of which describes a set of

discrete entities (classes, properties, etc.), find the

relationships holding between these entities.

For every two entities, our ontology mapping

method concerns two aspects of them: terminology

similarity and structural similarity. Terminology

similarity is to compare the morphological similarity

between the names of two entities by a measure

function. In our approach, we use Levenstein distance

as the measure function. The structural similarity of

two entities will be calculated based on the

terminology similarity of their relative entities. Then

we give a similarity score for the two entities which is

calculated by the weighted average of their

terminology similarity and structural similarity.

5.1 Terminology Similarity

We use edit distance to calculate the terminology

similarity of entities. Specially, we use Levenstein

distance here.

Generally speaking, an edit distance of two objects

is the minimal cost of operations applied to one of the

objects for obtaining the other. For edit distance on

strings that transform s to t, the operation set Op will

be:

Copy a character from s over to t

Delete a character in s

Insert a character in t

Substitute one character for another

A formal definition of edit distance is:

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

Definition. Given a set Op of string operations, and a

cost function : Op R , such that for any pair of

strings (,)s t , there exist a sequence of operations

which transforms the first one into the second one, the

edit distance (,)s t , is the cost of the less costly

sequence of operations which transform s in t

1() ; (... ())
(,) min ()

i I n iop op op s t op

i I

s t

Levenstein distance is the edit distance with all

costs to 1. From the definition, we can see that the

lower the value of (,)s t is, the higher similarity will

s and t have. Therefore, we define the function

(,)TermSim s t to calculate the similarity of two strings:

(,) (,)
(,)

(,)

MaxLength s t s t
TermSim s t

MaxLength s t

 Here, (,)MaxLength s t represents the max length of

strings s and t.

Table 1. Terminology similarity of ontologies

For each
i

class TO

For each
j

class EO

Output ((), ());i jTermSim name class name class

For each DatatypeProperty
i

DP TO

For each DatatypeProperty
j

DP EO

Output ((), ());i jTermSim name DP name DP

For each ObjectProperty
i

OP TO

For each ObjectProperty
j

OP EO

Output ((), ());i jTermSim name OP name OP

The algorithm for calculating terminology similarity

of temporary ontology (TO) and existing ontology (EO)

is described in Table 1. In the table, we use

()Name classT to denote the name of class T .

 The algorithm calculates the terminology similarity

of every two entities of belong to same category. For

example, each class in temporary ontology will be

compared with all the classes in the existing ontology

but not compared with the properties in the existing

ontology.

5.2 Structural Similarity

Ontology is not a set of entities separately but an

integrity of entities with their relationship. So we

consider the structure information is another kind of

important information for ontology mapping. For

example, if the properties of one class have good

matches with the properties of another class, there is a

higher probability that these two classes are to be

mapped.

In our algorithm, we consider the neighbors of each

entity. A neighbor of an entity E is the entity which

has a direct relationship with E. For an owl:Class, its

properties, super classes, sub classes are called its

neighbors. For a property, its domains and ranges are

called its neighbors. The algorithm for calculating

structural similarity of class entities is shown in Table

2. The algorithm for properties is similar.

Table 2. Algorithm for structural similarity

For each
i

class TO

For each
j

class EO

If (p < q)

For every
1 2{ , , ..., } {1, 2, ..., }pi i i q

1

(,)

max((,)) / ;
p

k

k

i j

k i

StructSim class class

TermSim NT NE p

 Else

For every
1 2{ , , ..., } {1, 2, ..., }qi i i p

1

(,)

max((,)) / ;
q

k

k

i j

i k

StructSim class class

TermSim NT NE q

 Output (,);i jStructSim class class

We use (,)StructSim u v to identify the structural

similarity of two entities u and v. We also use TO to

identify temporary ontology and EO for existing

ontology here. The neighbors of
i

class TO are the

set
1 2

{ , , ..., }
p

NT NT NT and the neighbors of

j
class EO are the set

1 2
{ , , ..., }

q
NE NE NE .

The algorithm gives the best terminology similarity

among the neighbors of two entities as their structure

similarity. We can also see that the algorithm just

focus on a local structure of the ontology, since it only

concerns the neighbors of each entity. An example of

structure similarity calculation is given in Table 3. The

ObjectProperty DayToBroadcast in the example is

described in the Fig. 3 and the ObjectProperty

DayForcast is defined in an existing ontology. For all

the matches between neighbors of DayToBroadcast

and DayForcast, the best match which has the

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

maximum sum of terminology similarities is {(DayInfo,

Date), (GetWeatherByZip, WorldWeather),

(GetWeatherByCity, DailyWeatherReport)} as shown

in Table 3.

Table 3. Example of structure similarity
Temporary

Entity

Neighbors Best

match

neighbors Existing

Entity

DayInfo 0.286 Date
GetWeather

ByZip
0.333 World

Weather

DayTo

Broadcast

GetWeather

ByCity
0.389 Daily

Weaterh

Report

Day

Forcast

StructSim: (0.286 + 0.333 + 0.389) / 3 = 0.336

5.3 Similarity score

The similarity score of two entities u and v is

calculated as the weighted average of their terminology

similarity and structural similarity. The formula is

defined as:

1 2
(,) * (,) * (,)SimScore u v TermSim u v StructSim u v

where
1 2

1. In our approach, we give
1
 a value

of 0.6 and give
2
 a value of 0.4.

For each entity E in a temporary ontology, the

similarity scores with all entities in the existing

ontology will be calculated and ranked. The entity in

the existing ontology which has the highest similarity

score with E is selected as the matching entity for E.

Fig 5. shows an example of mapping results. The

snippet gives a pair of mapping entities and their

similarity score.

Figure 5. Example of mapping result

6. OWL-S generation

OWL-S uses three types of knowledge to describe a

Web service: ServiceProfile, ServiceModel, and

ServiceGrounding. ServiceProfile is used to describe

what a Web service does, ServiceModel describes how

it works and ServiceGrounding is used to specify how

to access it.

Figure 6. Relationship between WSDL and OWL-S

Fig. 6 shows the relationship between WSDL and

OWL-S. WSDL and OWL-S share a number of

common points in describing a Web service process.

WSDL uses operations and messages to describe a

Web service process, while OWL-S ServiceModel

uses atomic processes and inputs/outputs to describe

the process. Though their names are different, their

effects are the same.

There are two main differences between WSDL and

OWL-S:

1. WSDL uses XML Schema to characterize the

input and output messages of Web services, whereas

OWL-S uses OWL classes.

2. OWL-S has no means to express the binding

information that WSDL provides.

The first difference is the reason why WSDL lacks

of semantics. Our translation and ontology mapping

method fill up this gap, since we can find OWL classes

which match with the XML schema types to describe

the input and output messages instead of XML schema

types themselves For the second difference, [2]

suggests to use WSDL as the grounding mechanism

for OWL-S. The basic idea is: First, it uses an owl-s-

parameter attribute to describe a part of message in

WSDL instead of type. Then, in ServiceGrounding it

uses a WSDLGROUNDING class, which is a subclass

of Grounding, to refer the relevant construct in WSDL.

Based on all of these similarities and ideas, we

define certain rules for the generation of OWL-S

description of Web services:

A portType in WSDL will become a

ProcessModel in ServiceModel.

An operation in WSDL will become an atomic

process in ServiceModel.

The input and output messages of an operation

will become the inputs and outputs of an atomic

process respectively

The mapping result of a message part’s type will

become the owl-s-parameter for that message part.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

According to these rules, the third step of our

approach completes the generation of ServiceModel

and ServiceGrounding of OWL-S. It also covers a part

of ServiceProfile, that is the input and output

information of the Web service. The rest part of

ServiceProfile, such as contactInformation and

qualityRating, will be added manually.

Our final result also preserves the mapping result,

since it includes all the mapping information not only

for classes but also for properties. We consider it very

useful for future work, such as the service matching

mechanism in service discovery and service

composition.

7. Experiment

In the first two steps, our approach completes a

process of mapping XML schema with ontology

concept. The first step makes a one-to-one

correspondence between XML schema and temporary

ontology. The second step finds the mapping between

the temporary ontology and existing ontologies. In this

section, we will show the ability of our approach by

presenting some of our experiment results.

7.1 Dataset

For the number of our domain specific ontologies is

limited, we just focus on two domains: travel domain

and weather domain. Our corpus is made up of 49 Web

services of travel domain and 16 Web services of

weather domain. All these files are selected from a

group of totally 856 Web services from Amazon.com

and XMethods.com. We also create a travel domain

ontology and a weather domain ontology according to

prior knowledge. To make our ontologies more general,

we select 20 files randomly from all the 65 Web

service files to modify our ontologies (5 from weather

domain and 15 from travel domain). We call these files

modification files. The other 45 files are called

independent files. Before the experiment, we first

annotate all the service files manually. For each

element in the XML schema, we find the most

appropriate concept in the domain ontology as the

mapping with that element.

7.2 Evaluation Measures

We evaluate our results by conducting the

measurement of precision. It is defined as follow:

correct discovery mapping
Precision

total number of mapping

Since each element in the XML schema has exactly

one correct mapping, we only use precision here.

7.3 Experiment Result

The experiment results are shown in Table 4.

Table 4. Mapping result in terms of precision(%)

 Travel Domain Weather Domain

Modification

files
92.5 96.4

Independent

files
78.6 79.5

Average 83.6 86.5

The average result is the experiment on both the

modification files and independent files. From the

result we can see that:

(1) The modification files have more precision than the

independent files. To make our ontologies more

general, we use the modification files to modify the

ontologies making sure that for each XML schema

element in modification files there really exits an

ontology concept matched with that element.

Otherwise, we add or change some structures of the

ontologies. So the modification files have more

similarity with the ontologies after modified. For the

independent files, their XML schema structures and

elements’ names are much more different from the

ontologies, so the precision is not high.

(2) The result of weather domain is better than the

travel domain. That is because the weather domain

ontology is smaller than the travel domain, and the

weather Web services are very similar with each other.

(3) The differences between the results of modification

files and independent files also show that if the

ontology is created more general, the precision will be

improved.

7.4 Complexity Analysis

Here we give the computational analysis of our

ontology mapping method.

Suppose the numbers of entities in the temporary

ontology and the existing ontology are m and n

respectively.

In section 5.1, the computational complexity of

Levenstein distance is
2

(('))O string s length . So the

total computational complexity of the first part is
2

(('))O mn string s length . In section 5.2, the structural

similarity calculation of two entities can be viewed as a

bipartite matching problem. The computational

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

complexity of the second part is
3

(('))O mn neighbor s number . In section 5.3, since the

computational complexity of the ranking algorithm for

every entity of temporary ontology is (log)O n n , the

computational complexity of this part is (log)O mn n .

The total computational complexity of our ontology

mapping method is the sum of the three parts above.

One advantage of our approach is that our mapping

method can be improved easily as the study of

ontology alignment further developed. We are

currently working on some other mapping methods

which combine advantages of other methods and ours.

8. Conclusion and Future work

In this paper, we discuss a process of annotating

Web services with semantics. First, we define several

rules to translate a XML schema to ontology in OWL.

Then we map the ontology with existing ontologies.

Finally we generate an OWL-S description for the

Web service using the mapping result. We also carry

out experiments to test the mapping method and

compare the results. We plan to further improve both

the accuracy and efficiency of the annotation as our

future work. One attribution of our work is that we

give a method which maps an XML schema with an

ontology. We find the mapping result contains large

amounts of information. This leads us to a further

study on how to use such information on Web service

discovery and composition.

9. References

[1] OWL: http://www.w3.org/TR/2004/REC-owl-features-

20040210/

[2] OWL-S: Semantic markup for Web Services, version 1.1,

available at http://www.daml.org/services/owl-s/1.1/

[3] T. L. Bach, R. Dieng-Kuntz, and F. Gandon, “On

ontology matching problems (for building a corporate

semantic web in a multi-communities organization)”, In Proc.

of ICEIS 2004, Port, Portugal, 2004.

[4] J. Berlin and A. Motro, “Database schema matching

using machine learning with feature selection”, 14th

International conference on advanced information system

engineering (CAiSE), Toronto, Ontario, Canada, 2002,

pp.452-466

[5] A. Doan, P. Domingos, and A. Halevy, “Reconciling

Schemas of Disparate Data Sources: A Machine-Learning

Approach”, In Proceedings of the 2001 ACM SIGMOD

International Conference on Management of Data, 2001

[6] A. Doan, J. Madhavan, P. Domingos and A. Halevy,

“Learning to Map Between Ontologies on the Semantic

Web”, WWW2002, Honolulu, Hawaii, USA, May 2002

[7] D. C. Fallside and P. Walmsley, XML Schema Part 0:

Primer Second Edition, available at

http://www.w3.org/TR/xmlschema-0/

[8] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML

Schema to OWL”, Web Engineering - 4th International

Conference (ICWE 2004), Munich, Germany, July 2004, pp.

354-358

[9] R. Herzog, H. Lausen, D. Roman, P. Zugmann (eds.):

WSMO Registry. WSMO working draft, available at

http://www.wsmo.org/2004/d10/v0.1/, 2004

[10] A. Hess and N. Kushmerick, “Learning to Attach

Semantic Metadata to Web Services”, Proceeding of the 2nd

International Semantic Web Conference (ISWC 2003),

Florida, USA, Oct. 2003, pp. 258-273

[11] R. Lara, D. Roman, A. Polleres and D. Fensel, “A

Conceptual Comparison of WSMO and OWL-S”, available

at http://www.wsmo.org/2004/d4/d4.1/v0.1/20050106/

[12] N. F. Noy and M. Musen, “PROMPT: Algorithm and

Tool for Automated Ontology Merging and Alignment”,

Proceedings of the National Conference on Artificial

Intelligence (AAAI 2000), Austin, Texas, USA, 2000, pp.

450-455

[13] N. F. Noy and M. Musen, “Anchor-PROMPT: Using

Non-local Context for Semantic Matching”, In Proceedings

of IJCAI 2001 Workshop on Ontology and Information

Sharing, Seattle, Washington, USA, 2001, pp.63-70.

[14] M. Paolucci, N. Sriivasan, K. Sycara and T. Nishimura,

“Towards a Semantic Choreography of Web Services: from

WSDL to DAML-S”, Proceedings of the International

Conference on Web Services (ICWS 2003), Las Vegas,

Nevada, USA, June 2003, pp. 22-26

[15] A. Patil, S. Oundhakar, A. Sheth and K. Verma,

“METEOR-S Web Service Annotation Framework”,

WWW2004, New York, USA, pp. 553-562.

[16] E. Rahm and P. A. Bernstein, “A survey of approaches

to automatic schema matching”, The VLDB Journal,

Springer-Verlag, New York, USA, Dec. 2001, pp.334-350.

[17] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller,

“Adding semantics to web services standards”, In

Proceedings of the 1st International Conference on Web

Services (ICWS'03), Las Vegas, Nevada, USA, 2003

[18] G. Stumme and A. Mädche, “FCA-merge:

bottom-up merging of ontologies”, In Proc. 17th IJCAI,

Seattle (WA US), 2001, pp. 225–230

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

