
Web Services Searching based on Domain Ontology 

Xu Bin, Wang Yan, Zhang Po, Li Juanzi 

Department of Computer Science, Tsinghua University, Beijing 100084, P.R.China 

xubin@tsinghua.edu.cn,

{wang-yan,zhangpo03}@mails.tsinghua.edu.cn, ljz@keg.cs.tsinghua.edu.cn 

Abstract

Searching proper web services is the basic step to 

composite web services into applications. Current 

searching in UDDI servers is based on taxonomy and 

tModel, which is not convenient to find domain related 

web services. In this paper, we propose a method to 

search web services based on domain ontology. Firstly 

the WSDL crawler collects the WSDL files from the 

Internet resources like Google, Baidu and XMethods 

as much as possible. Secondly ontology is used to 

represent the domain, such as travel ontology. Thirdly 

a Support Vector Machine (SVM) classifier is 

constructed to select the domain WSDL files from the 

collected WSDL files; domain vector is built according 

to the domain ontology, and features are extracted 

from WSDL files to train the SVM classifier. Finally 

we evaluate the method through experiment and show 

that the method is effective. 

1. Introduction 

Web services are new paradigm to construct 

distributed applications in the web. Technologies like 

WSDL, SOAP and UDDI constitute the current 

standards of web services. Discovery and composition 

of web services are key steps to build web applications. 

Nowadays web services are published and searched in 

central registry of UDDI servers. It is through 

taxonomy and tModel to encourage the registrants to 

categorize their businesses, services and service 

descriptions. Therefore it is also through them for the 

businesses to find each other and the services meet 

their needs.

Composition of web services has received much 

interest to support B2B or enterprise application 

integration. Applications are to be assembled from a 

set of appropriate web services and no longer be 

written manually. Seamless composition of web 

services has enormous potential in development 

distributed application. 

To composite web services into new application, it 

is often inside a domain to search related web services. 

For example, to develop an application about travel, 

the developer should search web services about 

booking flight ticket, reserving hotel and car, and 

weather etc. A domain is a specific area, which is 

represented by an ontology in this paper, domain. For 

example, the travel ontology[1] is about concepts of 

traveling, while the wine ontology[2] is about wine’s 

taste and type. Current web services’ searching is 

based on tModel of UDDI, therefore, it is not 

convenient to search web services in a domain. The 

developer have to search through keywords like 

“travel”, “flight”, “hotel”, “car”, “weather” separately. 

Furthermore, web services which are not registered in 

UDDI servers can’t be discovered through tModel. 

At the same time, the operation name and 

description in WSDL file often give hints about the 

domain of the web services. Such as in web services of 

“Global Weather”[3], operation name of “GetWeather” 

and its description “Get weather report for all major 

cities around the world” have obvious meaning about 

weather. Hence, WSDL files contain the information 

about its domain. 

In this paper, we propose a method to search web 

services according to a domain ontology. Firstly, to get 

as much as possible WSDL files directly in the Internet, 

the WSDL crawler collects WSDL files from the web 

pages in XMethods1, Google2 and Baidu3. Secondly, to 

represent a travel domain, the travel ontology is given. 

Then domain vector is built according to the ontology. 

Thirdly, features are extracted from selected WSDL 

files to form the training set of SVM[4] classifier. 

Experiment shows that the method is effective. 

                                                          
1 www.xmethods.com 
2 www.google.com 
3 www.baidu.com 

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05) 
0-7695-2438-9/05 $20.00 © 2005 IEEE 



The rest of this paper is structured as follows: in 

section 2, we present the WSDL crawler and its result. 

In section 3, we describe the travel ontology. In section 

4, we describe the SVM classifier, and in section 5, we 

give the experiment result and its accuracy. Section 6 

demonstrates the application of searching web services 

based on domain. Section 7 gives the related works. 

We make concluding remarks in section 7. 

2. WSDL Crawler 

Each web service has a WSDL file to describe its 

interface and functions. Besides getting WSDL file 

through UDDI servers of IBM4 or Microsoft5, most 

WSDL files are directly put in the Internet. So in this 

paper the WSDL crawler tries to search WSDL files 

directly in the Internet. 

The crawler crawls from three web sources: 

XMethods, Google and Baidu. XMethods is a website 

to collect available web services. It lists the web 

services’ publisher, style, service name, description 

and implementation on web pages. The crawler gets 

the full list page from XMethods and analyzes its links 

to each WSDL file. Then the crawler visits all the links 

to save the WSDL file and the description text file. 

The crawler uses the search engine Google to get 

web pages containing WSDL in their URL. Searching 

sentences of “inurl:wsdl” or “inurl:asmx” are used in 

Google, and pages including the link to WSDL or 

ASMX file are returned. The crawler analyzes the 

pages and saves the WSDL files. 

Baidu is a famous Chinese search engine. Searching 

sentences of “inurl:wsdl” or “inurl:asmx” are also used 

in Baidu to get web pages including the link to WSDL 

or ASMX file. The crawler also analyzes them and 

gets WSDL files. 

The simple algorithm of the crawler is as following: 

Vector PageList=null; 
Vector OnePageURLs=null; 

switch(source){
   case GOOGLE: 
      clear PageList and OnePageURLs; 

PageList.add("http://www.google
.com/search?hl=zh-
CN&q=allinurl%3Awsdl&lr=");

PageList.add("http://www.google
.com/search?hl=zh-
CN&q=allinurl%3Aasmx&lr=");
      save PageList to google.log; 

                                                          
4 uddi.ibm.com 
5 uddi.microsoft.com 

      get every OnePageURLs from 
google.log;
      get WSDL files from the links 
in OnePageURLs and save them in 
directory google; 
      break; 

  case BaiDu: 
      clear PageList and OnePageURLs; 

PageList.add("http://www.baidu.
com/s?wd=inurl%3A%28wsdl%29&cl=3");

PageList.add("http://www.baidu.
com/s?wd=inurl%3A%28asmx%29&cl=3");
      save PageList to baidu.log; 
      get every OnePageURLs from 
baidu.log;
      get WSDL fils from the links in 
OnePageURLs and save them in 
directory baidu; 
      break; 

   case XMethods: 
      clear PageList and OnePageURLs; 

pagelist.add("http://www.xmetho
ds.net/ve2/Directory.po;jsessionid=rd
z1afIp9Yxz2bWek5I1D34U(QHyMHiRM)");
      save PageList to xmethods.log 
      get every OnePageURLs from 
xmethods.log;
      get WSDL files from the links 
in OnePageURLs and save them in 
directory xmethods; 
      break; 
   } 

The web pages returned from Google or Baidu may 

link to the same WSDL, then the crawler removes the 

repeated WSDL. For example, after removing the 

repeated WSDL from the 55679 links in Google, there 

are only 357 WSDL files left.  

Table 1. Quantity of Web Services 

Google Baidu 
Source XMethods

wsdl asmx wsdl asmx
Quantity 422 154 357 7 36 

Table 1 lists the quantity of web services got from 

the three sources. There are totally 976 WSDL files 

collected. Full list of XMethods commonly includes 

422 links to WSDL files. Though the links from 

Google are more than 50000, only 511 WSDL files left 

because of repeated ones. Baidu is only 43 WSDL files 

left.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05) 
0-7695-2438-9/05 $20.00 © 2005 IEEE 



3. Our Travel Ontology 

Our travel ontology in this paper is developed 

through combining concepts from OTA[5] and some 

other mature travel services. OTA (OpenTravel 

Alliance) defines a common information representation 

form for travel domain using XML, to make sure the 

different travel industry companies can transmit 

information seamless through WWW. OTA now has 

over 150 travel industry company members, so it is 

very valuable for the definition of travel ontology. 

Now, our travel ontology has 51 classes and 119 

properties, in OWL-DL[6] format, including booking 

air ticket, hotel and car rental sub travel domains. This 

travel ontology has been published in SchemaWeb[1] 

or can be got at our website6.

According to the various categories of ontology 

information, this Ontology can be separated into two 

main categories: Domain Ontology and Domain 

Independent Ontology. The Domain Ontology contains 

domain related ontology information, while the 

Domain Independent Ontology contains generic 

information such as “Time”, “Date”, “Money”,

“Person”, “Location” and so on. 

The more detailed category in Domain Ontology 

is: Travel Domain. And the SubDomain contains three 

uncrossing categories: Car Domain, Hotel Domain and 

Flight Domain. 

Those classes in our Travel Ontology are related 

by two kinds of relations. One is the hierarchy relation, 

such as “subClassOf”, the other is the reference 

relation, such as ObjectProperty of a class. When any 

two classes in our Travel Ontology can be related by 

some kind of relations, we say the Ontology has 

connectivity and is complete. 

4. SVM Classifier for WSDL 

The Support Vector Machine (SVM) is a learning 

methodology based on Vapnik-Chervonenkis (VC) 

theory.[4] SVM have received much attention and 

have been applied to a number of practical problems 

ranging from text classification to image processing to 

optical character recognition. We constructed a SVM 

classifier to select the domain related WSDL files. 

We trained the SVM based on our travel ontology. 

Firstly, we generated a travel domain vector from our 

travel ontology, which detailed in section 4.1. 

Secondly, to form the training set for the SVM 

classifier, we had to manually select positive and 

negative WSDL files from all the WSDL files listed in 

                                                          
6 http://keg.cs.tsinghua.edu.cn/persons/zp/travel_onto_is.owl

table 1. Positive WSDL files are the WSDL files about 

travel, while negative WSDL files are not. 

4.1 Domain Vector 

Domain vector is the keywords list extracted from 

all the classes and properties of domain ontology to 

represents the characters of the domain. Such as 

keyword “weather” can be extracted from the class 

weather, and keyword “car” and “rental” can be 

extracted from the property hasCarRental. Stop word 

list is used during keyword extraction. For example, 

the domain vector of travel ontology is: 

DomainVectortravel=[Travel, Car, Weather, Hotel, 

Airport, Airline, Flight, Ticket, Aircraft, Reservation, 

Room, Restaurant……] 

Domain vector has two usages, the first one is to 

select the possible positive and negative WSDL 

instances, and the second one is to extract features 

from the WSDL file. 

4.2 Selecting WSDL files about travel 

The crawler collects 976 WSDL files. Not all of 

these files are about travel, but to form the training set 

of SVM classifier, we must manually select the WSDL 

files about travel to act as positive instances, and select 

WSDL files no related to travel to act as negative 

instances. Firstly, To reduce the manual selecting 

works, we use the travel domain vector to filter all the 

WSDL files and get the result set WSfiltered. Any WSDL 

files containing one of the keywords in the domain 

vector could be put to WSfiltered. Then we look at every 

WSDL file in WSfiltered to decide whether it is about 

travel, if yes then put it in the positive WSDL 

instances set WSpositive. Secondly we select the negative 

WSDL instances set WSnegative from the web services 

except WSpositive. Then, we extract features from 

WSpositive and WSnegative to form the training set for SVM. 

4.3 Extracting Features from WSDL file 

Every WSDL file represents the function and 

interface of a web service. In WSDL file, the tag 

<wsdl:operation name=”……”> which describes the 

interface name has obvious meaning. Such as one 

fragment of the WSDL file about weather[3]: 
<?xml version=”1.0” encoding=”utf-
8”?>

……
<wsdl:portType name="GlobalWeather 
Soap">
<wsdl:operation name="GetWeather"> 
<documentation xmlns= 
"http://schemas.xmlsoap.org/wsdl/">

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05) 
0-7695-2438-9/05 $20.00 © 2005 IEEE 



Get weather report for all major 
cities around the world. 
</documentation>
<wsdl:input
message="tns:GetWeatherSoapIn" /> 
<wsdl:output
message="tns:GetWeatherSoapOut" /> 
</wsdl:operation>

<wsdl:operation
name="GetCitiesByCountry">
<documentation xmlns= 
"http://schemas.xmlsoap.org/wsdl/">
Get all major cities by country 
name(full / part).   </documentation> 
<wsdl:input message= 
"tns:GetCitiesByCountrySoapIn" /> 
<wsdl:output message= 
"tns:GetCitiesByCountrySoapOut" /> 
</wsdl:operation>
</wsdl:portType>

……

In the above WSDL file, the first operation name is 

“GetWeather”, which can be separated into two words 

“Get” and “Weather” through the capital letter. And 

the words in the tag <documentation> are “Get

weather report for all major cities around the world”.

All these words are information of the web service. So 

features are selected from these words. The feature of 

one WSDL file is a word vector. We counted the term 

frequency[7] from all the words appearing in the tag 

<wsdl:operation name=”……”> and

<documentation> , but every term should be keyword 

of the travel  domain vector. The word vector is as 

following: 

VectorWSDL=[w1, w2, w3……wi]

wi = i

TFi

TFi

1

Finally, we generated the training set for the SVM 

classifier. The training set is a data set containing 

many lines. Each line is a word vector of one web 

service. And all the web services in the training set are 

from the positive set WSpositive and the negative set 

WSnegative.

5. Experiment 

To test the accuracy of SVM classifier, we formed 

the training set and test set from WSpositive and WSnegative.

We selected 32 WSDL files from WSfiltered to form 

WSpositive, and 48 WSDL files to form WSnegative . 

WSDL files in WSpositive and WSnegative were divided into 

five groups separately, we chose four groups randomly 

to form the training set for SVM to learn, and the left 

one group was used for testing. For each WSDL file in 

the training set, its vector VectorWSDL was calculated 

and written as one line into train.dat file for SVM. In 

the same way, each WSDL file in the testing set was 

calculated its vector VectorWSDL  and written as one line 

into test.dat file. 

Therefore, there was a total of five testing results: 

Table 2 Accuracy on test set 
Training 

set
Group

2,3,4,5

Group

1,3,4,5

Group

1,2,4,5

Group

1,2,3,5

Group

1,2,3,4
Testing 

Set
Group1 Group2 Group3 Group4 Group5

Accuracy 82.35% 87.50% 87.50% 100.0% 94.12% 

Table 2 lists the training set, testing set and 

prediction accuracy of the SVM classifier. Each group 

contains from 14 to 17 WSDL files.  The highest test 

accuracy is 100%, the lowest accuracy is 82.35%. And 

the average accuracy of the five tests is 90.29%. This 

result shows that our method is effective to serach 

domain related web services. 

6. Application of Searching Web Services 

based on Domain 

Figure 1   Interface of searching web services 

We developed an application for searching web 

services based on the WSDL crawler, our travel 

ontology and SVM classifier. There are two interfaces 

in the application. One is searching web services 

interface, the other is domain configuration interface. 

In the interface of searching web services, user can 

choose any sources of Google, Baidu and XMethods to 

collect new WSDL files from the Internet, and choose 

the domain which he wants to search from the list 

menu. Then the application starts to crawl all the 

WSDL files from the selected sources, and compares 

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05) 
0-7695-2438-9/05 $20.00 © 2005 IEEE 



with the WSDL files in log, then updates the log with 

the newest files. Then the SVM classifier decides 

every WSDL in log whether it is in the selected 

domain, and lists them in the left window. The right 

bottom window will show the description of any 

WSDL files selected from the left window. Because 

the WSDL files in the web will update from time to 

time, this interface can get the newest domain related 

web services. 

In domain configuration interface, user can import 

new ontology, and manually choose the positive 

instances of WSDL files from all the files in log. The 

negative instances are automatically selected from the 

WSDL files. Then the SVM classifier starts to learn 

the positive instances and negative instances of this 

domain, and finally gets the precondition rule model of 

the domain. This interface helps the user to import 

many kinds of domain ontology, and broaden the 

searching domains in the first interface. 

7. Related Work 

WSMO[8] is an ontology for describing various 

aspects related to semantic web services, which is 

supported by the SWWS(Semantic Web enabled Web 

Service) project from European Union. WSMO is 

based on WSMF(Web Service Modeling Framework). 

WSMF consists of four different main elements for 

describing semantic web services: ontologies, goals,

web services and mediators. The focused crawler for 

web services discovery[9][10] in WSMO is mainly for 

searching the semantically annotated web services, in 

WSDL descriptions or in UDDI/ebXML registries, or 

finally the semantic web services written in 

WSML[11]. This crawler is based on keyword 

searching, is not domain related and has no SVM 

classifier.

The BINGO! focused crawler[12] is a relatively 

new, promising approach to improving the recall of 

expert search on the Web. It typically starts from a 

user or community-specific tree of topics along with a 

few training documents for each tree node, and then 

crawls the Web with focus on these topics of interest. 

It uses a linear SVM to classify the high-quality 

documents for expert web search. Though the crawler 

is towards fully automated portal generation, it is not 

mainly for WSDL crawling.  

8. Conclusion and Future Work 

This paper proposes a method to search domain 

related web services from the Internet. WSDL files 

often represent the domain information of web services. 

We use ontology to describe the domain, and generate 

the domain vector. We construct the SVM classifier to 

select domain related WSDL files from all the WSDL 

files collected by the crawler. Positive and negative 

instances of WSDL files forms training set for SVM 

classifier. Experiment shows that our method is 

effective.

There are some works to do in the future. Such as 

extending the domain scopes from our travel ontology 

to other ontologies, or increasing the accuracy of SVM 

classifier by selecting more features from WSDL, or 

even from semantic descriptions like OWL and 

WSMO.  

References

 [1] Po ZHANG. Travel Ontology.  

http://www.schemaweb.info/schema/SchemaDetails.aspx?id

=236, 2005. 

[2] http://www.w3.org/TR/owl-guide/wine.rdf 

[3] http://www.webservicex.com/globalweather.asmx?WSDL 

[4] Vladimir N. Vapnik, The Nature of Statistical Learning 

Theory. Springer, 1995. 

[5] http://www.opentravel.org/ 

[6] http://www.w3.org/2004/OWL/ 

[7] Salton, G., and Buckley, C., Term-Weighting Approaches 

in Automatic Text Retrieval, Information Processing 

&Management, 24(5), pp. 513-523, 1988. 

[8] D. Roman, H. Lausen, U. Keller, C. Bussler, D. Fensel, 

M. Kifer, E. Oren, C. Priest, M. Stollberg. D2v1.1. Web 

Servcie Modeling Ontology(WSMO), WSMO Working 

Draft 10 October 2004. 

http://www.wsmo.org/2004/d2/v1.1/20041010/

[9] David Aiken. D10.1v0.1 Focused Crawler for Web 

Service Discovery, WSMO Working Draft 13 April 2005 

http://www.wsmo.org/TR/d10/d10.1/v0.1/20050413

[10] David Aiken. B2C Web Service Discovery 

http://sws.deri.ie/members/david/publications/B2CWSD.pdf

[11] J.D Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. 

Predoiu, M. Kifer, D. Fensel,  D16.1v0.2 The Web Service 

Modeling Language WSML, WSML Final Draft 20 March

2005 http://www.wsmo.org/TR/d16/d16.1/v0.2/20050320/

[12] S. Sizov, J. Graupmann, M. Theobald. From Focused 

Crawling to Expert Information: an Application Framework 

for Web Exploration and Portal Generation. VLDB2003:

Berlin, Germany pp1105-1108 

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05) 
0-7695-2438-9/05 $20.00 © 2005 IEEE 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


