Web Services Searching based on Domain Ontology

Xu Bin, Wang Yan, Zhang Po, Li Juanzi
Department of Computer Science, Tsinghua University, Beijing 100084, P.R.China
xubin@tsinghua.edu.cn,
{wang-yan,zhangpo03 }@mails.tsinghua.edu.cn, ljiz@keg.cs.tsinghua.edu.cn

Abstract

Searching proper web services is the basic step to
composite web services into applications. Current
searching in UDDI servers is based on taxonomy and
tModel, which is not convenient to find domain related
web services. In this paper, we propose a method to
search web services based on domain ontology. Firstly
the WSDL crawler collects the WSDL files from the
Internet resources like Google, Baidu and XMethods
as much as possible. Secondly ontology is used to
represent the domain, such as travel ontology. Thirdly
a Support Vector Machine (SVM) classifier is
constructed to select the domain WSDL files from the
collected WSDL files; domain vector is built according
to the domain ontology, and features are extracted
from WSDL files to train the SVM classifier. Finally
we evaluate the method through experiment and show
that the method is effective.

1. Introduction

Web services are new paradigm to construct
distributed applications in the web. Technologies like
WSDL, SOAP and UDDI constitute the current
standards of web services. Discovery and composition

of web services are key steps to build web applications.

Nowadays web services are published and searched in
central registry of UDDI servers. It is through
taxonomy and tModel to encourage the registrants to
categorize their businesses, services and service
descriptions. Therefore it is also through them for the
businesses to find each other and the services meet
their needs.

Composition of web services has received much
interest to support B2B or enterprise application
integration. Applications are to be assembled from a
set of appropriate web services and no longer be
written manually. Seamless composition of web

services has enormous potential in development
distributed application.

To composite web services into new application, it
is often inside a domain to search related web services.
For example, to develop an application about travel,
the developer should search web services about
booking flight ticket, reserving hotel and car, and
weather etc. A domain is a specific area, which is
represented by an ontology in this paper, domain. For
example, the travel ontology[1] is about concepts of
traveling, while the wine ontology[2] is about wine’s
taste and type. Current web services’ searching is
based on tModel of UDDI, therefore, it is not
convenient to search web services in a domain. The
developer have to search through keywords like
“travel”, “flight”, “hotel”, “car”, “weather” separately.
Furthermore, web services which are not registered in
UDDI servers can’t be discovered through tModel.

At the same time, the operation name and
description in WSDL file often give hints about the
domain of the web services. Such as in web services of
“Global Weather’[3], operation name of “GetWeather”
and its description “Get weather report for all major
cities around the world” have obvious meaning about
weather. Hence, WSDL files contain the information
about its domain.

In this paper, we propose a method to search web
services according to a domain ontology. Firstly, to get
as much as possible WSDL files directly in the Internet,
the WSDL crawler collects WSDL files from the web
pages in XMethods', Google® and Baidu®. Secondly, to
represent a travel domain, the travel ontology is given.
Then domain vector is built according to the ontology.
Thirdly, features are extracted from selected WSDL
files to form the training set of SVM[4] classifier.
Experiment shows that the method is effective.

1

www.xmethods.com
2

www.google.com
3 www.baidu.com

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

The rest of this paper is structured as follows: in
section 2, we present the WSDL crawler and its result.
In section 3, we describe the travel ontology. In section
4, we describe the SVM classifier, and in section 5, we
give the experiment result and its accuracy. Section 6
demonstrates the application of searching web services
based on domain. Section 7 gives the related works.
We make concluding remarks in section 7.

2. WSDL Crawler

Each web service has a WSDL file to describe its
interface and functions. Besides getting WSDL file
through UDDI servers of IBM* or Microsoft’, most
WSDL files are directly put in the Internet. So in this
paper the WSDL crawler tries to search WSDL files
directly in the Internet.

The crawler crawls from three web sources:
XMethods, Google and Baidu. XMethods is a website
to collect available web services. It lists the web
services’ publisher, style, service name, description
and implementation on web pages. The crawler gets
the full list page from XMethods and analyzes its links
to each WSDL file. Then the crawler visits all the links
to save the WSDL file and the description text file.

The crawler uses the search engine Google to get
web pages containing WSDL in their URL. Searching
sentences of “inurl:wsdl” or “inurl:asmx” are used in
Google, and pages including the link to WSDL or
ASMX file are returned. The crawler analyzes the
pages and saves the WSDL files.

Baidu is a famous Chinese search engine. Searching
sentences of “inurl:wsdl” or “inurl:asmx” are also used
in Baidu to get web pages including the link to WSDL
or ASMX file. The crawler also analyzes them and
gets WSDL files.

The simple algorithm of the crawler is as following:

Vector Pagelist=null;
Vector OnePageURLs=null;

switch (source) {
case GOOGLE:
clear Pagelist and OnePageURLs;
PageList.add ("http://www.google
.com/search?hl=zh-
CN&g=allinurl%3Awsdl&lr=");
PagelList.add ("http://www.google
.com/search?hl=zh-
CN&g=allinurl%3RAasmx&lr=");
save Pagelist to google.log;

4 ..
uddi.ibm.com
5 uddi.microsoft.com

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

get from
google.log;

get WSDL files from the links
in OnePageURLs and save them in
directory google;

break;

every OnePageURLs

case BaiDu:
clear Pagelist and OnePageURLs;
PagelList.add ("http://www.baidu.
com/s?wd=1inurl%$3A%28wsdl%29&cl=3");
PagelList.add ("http://www.baidu.
com/s?wd=1inurl%3A%28asmx%29&cl=3") ;
save Pagelist to baidu.log;

get every OnePageURLs from
baidu.log;

get WSDL fils from the links in
OnePageURLs and save them in
directory baidu;

break;

case XMethods:

clear PageList and OnePageURLs;

pagelist.add ("http://www.xmetho
ds.net/ve2/Directory.po;jsessionid=rd
z1lafIp9Yxz2bWek5I1D34U (QHYyMHiRM) ") ;

save PagelList to xmethods.log

get every OnePageURLs from
xmethods.log;

get WSDL files from the links
in OnePageURLs and save them in
directory xmethods;

break;

}

The web pages returned from Google or Baidu may
link to the same WSDL, then the crawler removes the
repeated WSDL. For example, after removing the
repeated WSDL from the 55679 links in Google, there
are only 357 WSDL files left.

Table 1. Quantity of Web Services

Source | XMethods Google Baidu
wsdl | asmx | wsdl | asmx
Quantity 422 154 357 7 36

Table 1 lists the quantity of web services got from
the three sources. There are totally 976 WSDL files
collected. Full list of XMethods commonly includes
422 links to WSDL files. Though the links from
Google are more than 50000, only 511 WSDL files left
because of repeated ones. Baidu is only 43 WSDL files
left.

YF]',F.

COMPUTER
SOCIETY

3. Our Travel Ontology

Our travel ontology in this paper is developed
through combining concepts from OTA[S5] and some
other mature travel services. OTA (OpenTravel
Alliance) defines a common information representation
form for travel domain using XML, to make sure the
different travel industry companies can transmit
information seamless through WWW. OTA now has
over 150 travel industry company members, so it is
very valuable for the definition of travel ontology.
Now, our travel ontology has 51 classes and 119
properties, in OWL-DL[6] format, including booking
air ticket, hotel and car rental sub travel domains. This
travel ontology has been published in SchemaWeb[1]
or can be got at our website’.

According to the various categories of ontology
information, this Ontology can be separated into two
main categories: Domain Ontology and Domain
Independent Ontology. The Domain Ontology contains
domain related ontology information, while the
Domain Independent Ontology contains generic
information such as “Time”, “Date”, “Money”,
“Person”, “Location” and so on.

The more detailed category in Domain Ontology
is: Travel Domain. And the SubDomain contains three
uncrossing categories: Car Domain, Hotel Domain and
Flight Domain.

Those classes in our Travel Ontology are related
by two kinds of relations. One is the hierarchy relation,
such as “subClassOf”, the other is the reference
relation, such as ObjectProperty of a class. When any
two classes in our Travel Ontology can be related by
some kind of relations, we say the Ontology has
connectivity and is complete.

4. SVM C(lassifier for WSDL

The Support Vector Machine (SVM) is a learning
methodology based on Vapnik-Chervonenkis (VC)
theory.[4] SVM have received much attention and
have been applied to a number of practical problems
ranging from text classification to image processing to
optical character recognition. We constructed a SVM
classifier to select the domain related WSDL files.

We trained the SVM based on our travel ontology.
Firstly, we generated a travel domain vector from our
travel ontology, which detailed in section 4.1.
Secondly, to form the training set for the SVM
classifier, we had to manually select positive and
negative WSDL files from all the WSDL files listed in

6 http://keg.cs.tsinghua.edu.cn/persons/zp/travel_onto_is.owl

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

table 1. Positive WSDL files are the WSDL files about
travel, while negative WSDL files are not.
4.1 Domain Vector

Domain vector is the keywords list extracted from
all the classes and properties of domain ontology to
represents the characters of the domain. Such as
keyword “weather” can be extracted from the class
weather, and keyword “car” and “rental” can be
extracted from the property hasCarRental. Stop word
list is used during keyword extraction. For example,
the domain vector of travel ontology is:

DomainVector,,,.,~[Travel, Car, Weather, Hotel,
Airport, Airline, Flight, Ticket, Aircraft, Reservation,
Room, Restaurant......]

Domain vector has two usages, the first one is to
select the possible positive and negative WSDL
instances, and the second one is to extract features
from the WSDL file.

4.2 Selecting WSDL files about travel

The crawler collects 976 WSDL files. Not all of
these files are about travel, but to form the training set
of SVM classifier, we must manually select the WSDL
files about travel to act as positive instances, and select
WSDL files no related to travel to act as negative
instances. Firstly, To reduce the manual selecting
works, we use the travel domain vector to filter all the
WSDL files and get the result set WSjeeq. Any WSDL
files containing one of the keywords in the domain
vector could be put to WSj...s. Then we look at every
WSDL file in WSpyereq to decide whether it is about
travel, if yes then put it in the positive WSDL
instances set WS, Secondly we select the negative
WSDL instances set WS,eeaive from the web services
except WS ,sue. Then, we extract features from

WS positive ANA WS,yequive to form the training set for SVM.

4.3 Extracting Features from WSDL file

Every WSDL file represents the function and
interface of a web service. In WSDL file, the tag
<wsdl:operation name=""...... 7> which describes the
interface name has obvious meaning. Such as one
fragment of the WSDL file about weather[3]:
<?xml version="”1.0"” encoding="utf-
877>
<wsdl:portType
Soap">
<wsdl:operation name="GetWeather">
<documentation xmlns=
"http://schemas.xmlsoap.org/wsdl/">

name="GlobalWeather

YF]',F.

COMPUTER
SOCIETY

Get weather report for all major
cities around the world.
</documentation>

<wsdl:input
message="tns:GetWeatherSoapIn" />
<wsdl:output
message="tns:GetWeatherSoapOut" />
</wsdl:operation>

<wsdl:operation
name="GetCitiesByCountry">
<documentation xmlns=
"http://schemas.xmlsoap.org/wsdl/">

Get all major «cities by country
name (full / part). </documentation>
<wsdl:input message=

"tns:GetCitiesByCountrySoapIn" />
<wsdl:output message=
"tns:GetCitiesByCountrySoapOut" />
</wsdl:operation>
</wsdl:portType>

In the above WSDL file, the first operation name is
“GetWeather”, which can be separated into two words
“Get” and “Weather” through the capital letter. And
the words in the tag <documentation> are “Get
weather report for all major cities around the world”.
All these words are information of the web service. So
features are selected from these words. The feature of
one WSDL file is a word vector. We counted the term
frequency[7] from all the words appearing in the tag
<wsdl:operation and
<documentation> , but every term should be keyword
of the travel domain vector. The word vector is as
following:

Vectoryspi=[wl, w2, w3...... wi]

TFi

Wis———
ZTFi
1

Finally, we generated the training set for the SVM
classifier. The training set is a data set containing
many lines. Each line is a word vector of one web
service. And all the web services in the training set are
from the positive set WS,qu. and the negative set
WSnegative.

5. Experiment

To test the accuracy of SVM classifier, we formed
the training set and test set from W.S,,iie and WS,ceuive-
We selected 32 WSDL files from WSgjereq to form
WSpositives and 48 WSDL files to form WS,eeuive -
WSDL files in WS,osisive and WS,eqarive were divided into
five groups separately, we chose four groups randomly

to form the training set for SVM to learn, and the left
one group was used for testing. For each WSDL file in
the training set, its vector Vectorysp, was calculated
and written as one line into train.dat file for SVM. In
the same way, each WSDL file in the testing set was
calculated its vector Vectorysp; and written as one line
into fest.dat file.
Therefore, there was a total of five testing results:
Table 2 Accuracy on test set

Training | Group | Group Group Group | Group

set 2345 (1345 | 1245 | 1,2,3,5 | 1,234
Testing Groupl | Group2 | Group3 | Group4 | Group5
Set

Accuracy | 82.35% 87.50% 87.50% 100.0% 94.12%

Table 2 lists the training set, testing set and
prediction accuracy of the SVM classifier. Each group
contains from 14 to 17 WSDL files. The highest test
accuracy is 100%, the lowest accuracy is 82.35%. And
the average accuracy of the five tests is 90.29%. This
result shows that our method is effective to serach
domain related web services.

6. Application of Searching Web Services
based on Domain

testing classification result

Figure 1 Interface of searching web services
We developed an application for searching web
services based on the WSDL crawler, our travel
ontology and SVM classifier. There are two interfaces
in the application. One is searching web services
interface, the other is domain configuration interface.
In the interface of searching web services, user can
choose any sources of Google, Baidu and XMethods to
collect new WSDL files from the Internet, and choose
the domain which he wants to search from the list
menu. Then the application starts to crawl all the
WSDL files from the selected sources, and compares

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

with the WSDL files in log, then updates the log with
the newest files. Then the SVM classifier decides
every WSDL in log whether it is in the selected
domain, and lists them in the left window. The right
bottom window will show the description of any
WSDL files selected from the left window. Because
the WSDL files in the web will update from time to
time, this interface can get the newest domain related
web services.

In domain configuration interface, user can import
new ontology, and manually choose the positive
instances of WSDL files from all the files in log. The
negative instances are automatically selected from the
WSDL files. Then the SVM classifier starts to learn
the positive instances and negative instances of this
domain, and finally gets the precondition rule model of
the domain. This interface helps the user to import
many kinds of domain ontology, and broaden the
searching domains in the first interface.

7. Related Work

WSMOJ8] is an ontology for describing various
aspects related to semantic web services, which is
supported by the SWWS(Semantic Web enabled Web
Service) project from European Union. WSMO is
based on WSMF(Web Service Modeling Framework).
WSMF consists of four different main elements for
describing semantic web services: ontologies, goals,
web services and mediators. The focused crawler for
web services discovery[9][10] in WSMO is mainly for
searching the semantically annotated web services, in
WSDL descriptions or in UDDI/ebXML registries, or
finally the semantic web services written in
WSMLJ[11]. This crawler is based on keyword
searching, is not domain related and has no SVM
classifier.

The BINGO! focused crawler[12] is a relatively
new, promising approach to improving the recall of
expert search on the Web. It typically starts from a
user or community-specific tree of topics along with a
few training documents for each tree node, and then
crawls the Web with focus on these topics of interest.
It uses a linear SVM to classify the high-quality
documents for expert web search. Though the crawler
is towards fully automated portal generation, it is not
mainly for WSDL crawling.

8. Conclusion and Future Work

This paper proposes a method to search domain
related web services from the Internet. WSDL files
often represent the domain information of web services.

Proceedings of the 2005 IEEE International Workshop on Service-Oriented System Engineering (SOSE’05)
0-7695-2438-9/05 $20.00 © 2005 IEEE

We use ontology to describe the domain, and generate
the domain vector. We construct the SVM classifier to
select domain related WSDL files from all the WSDL
files collected by the crawler. Positive and negative
instances of WSDL files forms training set for SVM
classifier. Experiment shows that our method is
effective.

There are some works to do in the future. Such as
extending the domain scopes from our travel ontology
to other ontologies, or increasing the accuracy of SVM
classifier by selecting more features from WSDL, or
even from semantic descriptions like OWL and
WSMO.

References

[1] Po ZHANG. Travel Ontology.
http://www.schemaweb.info/schema/SchemaDetails.aspx?id
=236, 2005.

[2] http://www.w3.0org/TR/owl-guide/wine.rdf
[3] http://www.webservicex.com/globalweather.asmx?WSDL

[4] Vladimir N. Vapnik, The Nature of Statistical Learning
Theory. Springer, 1995.

[5] http://www.opentravel.org/
[6] http://www.w3.0rg/2004/OWL/

[7] Salton, G., and Buckley, C., Term-Weighting Approaches
in Automatic Text Retrieval, Information Processing
&Management, 24(5), pp. 513-523, 1988.

[8] D. Roman, H. Lausen, U. Keller, C. Bussler, D. Fensel,
M. Kifer, E. Oren, C. Priest, M. Stollberg. D2v1.1. Web
Servcie Modeling Ontology(WSMO), WSMO Working
Draft 10 October 2004.
http://www.wsmo.org/2004/d2/v1.1/20041010/

[9] David Aiken. D10.1v0.1 Focused Crawler for Web
Service Discovery, WSMO Working Draft 13 April 2005
http://www.wsmo.org/TR/d10/d10.1/v0.1/20050413

[10] David Aiken. B2C Web Service Discovery
http://sws.deri.ie/members/david/publications/B2CWSD.pdf

[11] J.D Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L.

Predoiu, M. Kifer, D. Fensel, D16.1v0.2 The Web Service
Modeling Language WSML, WSML Final Draft 20 March
2005 http://www.wsmo.org/TR/d16/d16.1/v0.2/20050320/

[12] S. Sizov, J. Graupmann, M. Theobald. From Focused
Crawling to Expert Information: an Application Framework
for Web Exploration and Portal Generation. VLDB2003:
Berlin, Germany pp1105-1108

YF]',F.

COMPUTER
SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

