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COMPUTATIONAL LENS ON BIG SOCIAL AND INFORMATION NETWORKS

Abstract

by

Yuxiao Dong

The connections between individuals form the structural backbone of human soci-

eties, which manifest as networks. In a network sense, individuals matter in the ways

in which their unique demographic attributes and diverse interactions activate the

emergence of new phenomena at larger, societal levels. Accordingly, this thesis devel-

ops computational models to investigating the ways that individuals are embedded in

and interact within a wide range of over one hundred big networks—the biggest with

over 60 million nodes and 1.8 billion edges—with an emphasis on two fundamental

and interconnected directions: user demographics and network diversity.

Work in this thesis in the direction of demographics unveils the social strate-

gies that are used to satisfy human social needs evolve across the lifespan, examines

how males and females build and maintain similar or dissimilar social circles, and

reveals how classical social theories—such as weak/strong ties, social balance, and

small worlds—are influenced in the context of digitally recorded big networks cou-

pled with socio-demographics. Our work on demographics also develops scalable

graphical models that are capable of incorporating structured discoveries (features),

facilitating conventional data mining tasks in networks. Work in this part demon-

strates the predictability of user demographic attributes from networked systems,

enabling the potential for precision marketing and business intelligence in social net-

working services. Work in this thesis in the direction of diversity examines how the
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diverse structures of common neighborhood influence link formation locally and net-

work organization globally, how this influence varies across different types of social

and information networks, and how it concords or conflicts with the principle of ho-

mophily. Work in this direction reveals how topic diversity—in contrast to authority

and popularity—drives the growth of impact in academic collaboration and citation

networks as well. Finally, our work on diversity presents neural network based repre-

sentation learning models for embedding heterogeneous networks in which there exist

diverse types of nodes and edges, giving rise to important implications for traditional

mining and learning tasks in heterogeneous network data, including similarity search,

clustering, and classification.



Dedicated to all networked beings.
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CHAPTER 1

INTRODUCTION

Network Science is defined as “the study of network representations of physical,

biological, and social phenomena leading to predictive models of these phenomena”

by the United States National Research Council [159]. The network science narrative

dates back to 1736, when Leonhard Euler introduced the notion of Seven Bridges of

Königsberg problem [188], which led to the formation of graph theory [18]. Since then,

the study of complex networked systems has largely benefited from the mathematical

power of graph theory, which offers a formal way to model networks [13].

By harnessing this mathematical power, network science has emerged as a founda-

tional construct through which to understand complex systems by representing and

modeling the different scales and modalities of interactions among components of a

system. For example, networks have been leveraged to model the connections between

individuals in the physical and virtual worlds—referred to as social networks—as well

as the (digital) interactions through which information flows—referred to as infor-

mation networks. While social and information networks have existed throughout

the course of human history, the scientific investigation of these networks is rela-

tively recent. Arguably, the foundation of social networks was laid in the 1930s,

when Moreno presented the concept of the ‘sociogram’, a graphical representation

of the social structure among elementary school students [155, 215]. An overview of

the history of social and information network science—rooted in graph theory and

statistical physics, cultivated by social science, and now flourishing in the era of big

network data and computational advances—is summarized in Figure 1.1.
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In the 1950s, abstracted from the f -factor problem [213, 214], the degree sequence

problem—the problem of whether there exists a graph realization given a degree

sequence—started to attract significant interest and effort from mathematicians such

as Havel [85] and Hakimi [83]. At the same time, Erdös, Rényi, and Gilbert developed

the theory of random graphs [60, 73]—the probability distribution over graphs—and

presented the very first random graph model, known as the Erdös-Rényi (ER) model,

in which the existence of edges is independent and identical when generating a graph.

After their inception, the degree sequence and random graph problems saw exten-

sive exploration by researchers throughout the second half of the 20th century, laying

the theoretical foundations for (social) network analysis, as well as the grounding

for different graph or network science models going beyond the random distribu-

tion assumption. Frank and Strauss presented the exponential random graph models

(ERGM) [65] in 1986. The Barabási-Albert model, introduced in 1999, proposed the

application of the preferential attachment process to generate random networks with

the scale-free property [14], a property commonly observed in many networked sys-

tems, including social and information networks [14, 62]. By formulating the concept

of gradient networks, Toroczkai and Bassler later showed that scale-free networks

are emergent from the efficient flow processing (e.g., information) across structures

with power-law degree distributions [211]. The Watts-Strogatz model [228], intro-

duced in 1998, enables the reproduction of random networks with two small-world

properties—short average path lengths and high clustering coefficients—which are

observed in real-world social networks. The remarkable contribution of this model

lies in its pioneering capacity to capture both of these small-world properties, neither

of which was recoverable by earlier models.

Parallel to the combinatorial and mathematical approaches to network science,

there has been a strong impetus from sociological theories. For example, the “small

world” phenomenon in social networks was first actualized and documented in a se-

3



ries of classic mail-tracing social experiments (296 and 160 letters) conducted by

Travers and Milgram in the 1960s [147, 212]. They found that any one individual

may be capable of reaching any other via a relatively short chain of intermediaries.

Lazarsfeld and Katz proposed the theory of a “two-step flow of communication”

to characterize the diffusion process by which information or influence flows from

opinion leaders [100, 116]. Lazarsfeld and Merton also established the principle of

homophily in 1954, which suggests that individuals generally gravitate to associate

with similar others [115]. Furthermore, Heider et al. presented the balance theory

to abstract the “friends’ friends are friends” and “enemies’ enemies are also friends”

phenomena, whereby balance is achieved in a closed triangle when all three links or

only one link are positive [86]. Both the theories of homophily and social balance

imply that close friends have the tendency to have overlapping social circles. How-

ever, observing in a 1960s’ interview population that relatively weak acquaintances

are actually more likely to help job seekers find jobs, Granovetter discovered “the

strength of weak ties”, the theory that weak ties serve as the bridge between two

close people [80]. Granovetter also proposed the concept of embeddedness—“the ex-

tent that a dyad’s mutual contacts are connected to one another”—to measure the

closeness of two people [79, 81]. More recently, in 1992, Ronald Burt formalized the

theory of structural holes, according to which those who serve as bridges are able to

facilitate the diffusion of information and innovations by bridging the gap between

individuals or parties who have complementary sources to knowledge [24].

Combining the foundational aspects from mathematical and social sciences with

the surge of digital data and computing advances has led to the development and

rapid growth of social and information network research from a computational per-

spective since the end of the 20th century. In particular, the underlying computing

challenges resulting from the unprecedented scale of network data started to draw sub-

stantial attempts and effort from computing scientists. For example, instead of man-
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ually tracing hundreds of letters like the small-world experiments of the 1960s, Watts

and Strogatz re-examined the small number of degrees of separation in a 225,226 -

actor collaboration network (IMDb) in 1998 [228]. In 2003, Dodds, Muhamad, and

Watts used a 60,000 email-tracing replication on a cross-nationally diverse popula-

tion, producing results encouragingly close to those of the original study [41]. During

the same period, Kleinberg also contributed to this line of research from an algo-

rithmic and computational perspective [103–105]. More recently, the existence of the

small-world phenomenon has been successfully established using observational data

obtained digitally from societal-scale systems featuring millions of individuals and

billions of connections, such as 180 million users in Microsoft MSN Messenger net-

work [120] and 721 million users in Facebook [12], all enabled by the sheer processing

power of modern computers. Furthermore, the computational analysis in large-scale

social systems also offers the opportunity to experimentally verify or reject classical

conjectures and theories. For example, an examination of the social recruitment pro-

cess in Facebook by Ugander et al. found that the contagion rate is tightly influenced

by the diversity of an individual’s neighborhood, upending the conventional wisdom

that such rates are controlled by the size of the neighborhood [216].

In addition to the validation of social theories previously established by small-scale

field studies, computational lens on big networks also enable the identification and

rectification of problems at the societal scale—problems that could not possibly be

examined otherwise. In the late 1990s, the Web page ranking problem in information

networks was identified and several extraordinary link analysis algorithms were pro-

posed to solve it, including Kleinberg’s Hyperlink-Induced Topic Search (HITS) [106],

Page et al.’ PageRank [23], and Li’s Hyperlink Vector Voting (HVV) [124]. By build-

ing upon the concepts of authorities and hubs in HITS, Gibson et al. defined and

inferred the community structures on the WWW, and derived possible explanations

for the grouped and hierarchical organization of the WWW network [72]. The early
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part of the 21st century has seen explosive growth in the exploration and study of so-

cial and information networks using computational tools and perspectives. Between

2001 and 2003, the influence maximization problem in social networks was proposed

and formalized as the NP-hard optimization problem of selecting at most k users

who are able to maximize the ‘word of mouth’ effect in a social network [42, 101].

Meanwhile, Liben-Nowell and Kleinberg formalized the question of whether new links

between individuals are predictable from a previous snapshot of a social network as

the link prediction problem [125]. Subsequently, Leskovec et al. studied the problem

of network evolution and found many social and information networks follow the den-

sification laws and exhibit shrinking diameters over time [121]. Undoubtedly, over the

last two decades, a myriad of remarkable problems, discoveries, and applications have

been demonstrated by applying a computational lens to large-scale social and infor-

mation networks [57], leading to the emergence of an exciting field: computational

social science [117, 226].

Notwithstanding the cornucopia of substantial and influential work already achieved

in network science and computational social science, there remain various unanswered

questions, some of which are the focus of this dissertation. First, the interplay in

human social networks between the rich set of demographic traits associated with in-

dividuals and the underlying network structures is still poorly understood. There is

evidence concerning the role of demographics in social activities, such as the principle

of (demographic) homophily that facilitates the connecting and maintaining of rela-

tionships [140] and the effects of cultural tastes on the density of social contacts across

social ties with different tie strength [127]. However, if we consider the influential

scientific milestones discussed above, many questions remain unexplored, especially

as to how demographic properties inform network structuration. Specifically:

• Regarding the theory of weak/strong ties, what influence do the gender and
age of two people connecting with a social tie have on its strength?
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• With respect to the social balance theory, how is balance achieved among three
people of different gender, such as three females or three males?

• Concerning the small world phenomenon, do individuals in specific age groups
live in a small world in relation to individuals in the same or other generational
clusters?

• With these social theories developed, are user demographic profiles predictable
from network structures?

• To untangle the interrelations between individuals’ demographics and connec-
tions, how do we address the computational challenges that arise from the
unprecedented scale of big network data?

In addition, there is also a lack of understanding of networks when coupled with

the notion of diversity. Research has shown that diversity matters in a wide range of

systems and disciplines. In biology and genetics, the stability of an ecosystem ben-

efits from the variability of species or genetics within it [66]. In organizational and

economic science, the diversity level of a group is more likely to positively correlate

with its performance [169]. More recently, network and social scientists have studied

the effects of structural diversity on economic development [56] and information con-

tagion [216]. Herein, we are interested in the following unaddressed questions relating

to when diversity meets networks:

• In view of the principle of (link) homophily, where individuals with more friends
in common are more likely to associate with each other, how does the structural
diversity of common neighborhoods influence the likelihood that an association
exists or will form between a pair of individuals?

• As we are embedded in numerous networks, does the influence of common
neighborhood diversity vary across different social and information networks?

• At the individual level, how does the topical diversity and authority of a scien-
tist’s research affect the growth of his or her scientific impact?

• Networks composed of diverse types of objects and connections present unique
challenges that cannot be handled by conventional models for homogeneous
networks. How do we design computational models to incorporate the aspects
of network diversity?
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Answers to these demographics- and diversity-based questions are not only critical

to furthering the development of the network and social sciences, but also to better

understanding the dynamics of human behavior, and the formation and sustenance of

societies. In light of this, we develop computational models to answer these questions

in large-scale networked social and information systems, and also demonstrate various

applications of the same. This research follows the process from discovering social

science inspired mechanisms to descriptive analytics to predictive science.

1.1 Contributions and Organization

In this thesis, we harness the power of social, data, and network science to un-

veil the social phenomena that emerge from individuals’ interactions, and ultimately

model and predict user behavior in large-scale social and information networks. Our

research is based on a rich collection of big network data that are digitally recorded,

from mobile phone communications to online social media to digital libraries. Using

this large collection of big network data, we formalize a wide range of data and net-

work science problems and identify their unique challenges in the context of networks.

We present computational models to address these problems and to efficiently and

effectively extract knowledge from these massive network datasets. The final thrust

of our research is then devoted to translating these discoveries and computational

models into real-world applications and insights.

As mentioned above, this thesis focuses on two broad and important directions—

demographics and diversity—and the way in which they manifest in big networks.

This enables a natural separation into two parts, one dedicated to each direction. The

overview of this thesis is shown in Figure 1.2. In Part I, we study the significant social

strategies that are used by females and males to fulfill their social needs—one of the

basic human needs—across their lifespan. Second, we investigate the phenomenon of

demographic-specific small worlds, and quantify the differences in the “smallness” of
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♣ Lifetime evolution of social strategy 
♣ Age-specific small worlds
♣ Demographics are predictable

♣ Common neighborhood signature
♣ Structural diversity violates homophily
♣ Authority facilitates influence growth

Demographics

Diversity

Local
Social Ties, Triads

Local
Common Neighborhood

Global
Network Superfamily

Global
Small Worlds

Topic
Social Impact

Graphical Models
Demographic Prediction

Neural Networks
Heterogeneity Embedding

Knowledge Discovery
Social & Network Sciences

Computational Models
Machine Learning

Predictive Applications
Data Science

♣ WhoAmI model
♣ Probabilistic graphical models
♣ Distributed & coupled learning

♣ User Profiling in social networks
♣ Coupled user / link prediction

♣ Future social impact prediction
♣ HIN mining and analysis tasks

♣ metapath2vec model
♣ Heterogeneous network embedding

Big Network Data: 120 Large-Scale Social & Information Networks
♣ Mobile network of 7+ million users & 1+ billion communications
♣ Friendster network of 60+ million users & 1.8 billion friendships
♣ AMiner heterogeneous academic collaboration & citation networks 

Figure 1.2. The structure of the thesis. Given the large-scale social and
information network data at the bottom, the topics that this thesis
investigates are presented in the middle and the flow of the scientific
process this thesis follows is shown at the top, wherein the major

discoveries and contributions are summarized at each step.

the world in which individuals of different gender and age live. From a computational

perspective, we formalize the problem of the joint inference of multiple demographic

attributes across coupled networks and present an effective and efficient learning

model to tackle its underlying challenges. Correspondingly, the contributions of Part

I are organized into three chapters.

Chapter 2 presents the study of how individuals with different demographic pro-

files connect and interact with each other in a big mobile communication network of

7 million users and 1 billion phone call and text message records approximating in-

teraction patterns at a societal scale. We investigate the interplay of communication
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interactions and demographic characteristics in the perspective of three micro-level

network structures—ego networks, social ties, and social triads. We draw a compar-

ison between the usage of phone calls and text messages to network with others. We

also demonstrate how the evolution of social strategies used by females and males

are dissimilar. We find, first, that young people put greater focus on enlarging so-

cial circles; as they age, they have the tendency to maintain small but closed social

relationships. Second, we also observe that same-gender triadic relationships are per-

sistently maintained over a lifetime, while the triangles among three opposite-gender

individuals disappear as one enters middle-age. Finally, the presented null model

demonstrates the statistical significance of the evolving social strategies in human

communication.

Chapter 3 presents the investigation of the age-specific small worlds using data

from the aforementioned large-scale mobile communication network. Rather than

asking whether two random individuals are separated by a small number of links,

we ask whether individuals in specific age groups live in a small world in relation to

individuals from other age groups. Our analysis shows that there is systematic varia-

tion in this age-relative small-world effect. We find young people live in the “smallest

world,” being separated from other young people and their parents’ generation via a

smaller number of intermediaries than older individuals. We also discover that the

most elderly live in the “least small world,” being separated from their same-age

peers and their younger counterparts by a larger number of intermediaries. Finally,

we demonstrate that variations in the small-world effect are specific to age as a node

attribute (being absent in the case of gender) and are consistently observed under

several data robustness checks.

Chapter 4 studies to what extent users’ demographic profiles can be inferred

from their mobile communication patterns, observed from previous chapters. We

formalize the demographic prediction problem of inferring users’ gender and age si-
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multaneously. We propose a factor graph-based WhoAmI method to address the

problem by leveraging not only the correlations between network features and users’

gender/age, but also the interrelations between gender and age. Additionally, we

identify a new problem—coupled network demographic prediction across multiple

mobile operators—and present a coupled variant of the WhoAmI method to address

its unique challenges. Our extensive experiments demonstrate the effectiveness, scal-

ability, and applicability of the WhoAmI methods. Finally, our study finds a greater

than 80% potential predictability for inferring users’ gender from phone call behavior

and 73% for users’ age from text messaging interactions.

In Part II, we investigate the effect of diversity on big networks. First, we study

the influence of the diverse structures embedded in the common neighborhood on

link formation across more than one hundred large-scale social and information net-

works. Second, we formalize a novel scientific impact prediction problem to examine

factors—topic diversity, authority, popularity, and so on—that can drive a paper

to increase its authors’ h-indices. Finally, we define the problem of heterogeneous

network representation learning and present neural network-based models to embed

networks of diverse types of nodes and links. This part is naturally structured into

the following three chapters.

Chapter 5 examines the principle of structural homophily—people with more

common neighbors are more likely to connect with each other—and characterizes the

structure of common neighborhoods as a function of their diversity and embedded-

ness. Using a collection of 120 large-scale networks—the biggest with over 60 million

nodes and 1.8 billion edges—we then leverage these structural characteristics to de-

velop a unique network signature, which we use to uncover several distinct network

superfamilies not discoverable by conventional methods. We demonstrate that the

impact of the common neighbor subgraph on link existence is significantly different

across various networks, with its diversity demonstrating a positive effect in BlogCat-
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alog and LinkedIn and a negative effect in Facebook and Friendster. We also discover

striking cases where it violates the principle of homophily. Our findings suggest that

the common neighborhood signature (CNS) is an intrinsic network property.

Chapter 6 presents work that aims to answer the question of whether a scientific

publication will contribute to its authors’ future h-indices, in contrast to the tradi-

tional focus on predicting the exact citation count of this publication in a regression

fashion. Using the AMiner dataset with millions of authors and papers, we find that

the researcher’s authority on the publication topic and the venue in which the paper

is published are crucial factors to the increase of the primary author’s h-index, while

the topic diversity and popularity are of surprisingly little relevance. By leveraging

relevant factors, we can predict an author’s h-index in five years with an R2 value of

0.92 and whether a previously (newly) published paper will contribute to this future

h-index with an F1 score of 0.99 (0.77). Finally, we develop an online tool that allows

users to generate informed h-index predictions.

Chapter 7 investigates how neural network-based embedding models can advance

heterogeneous network mining and analysis. We begin by formally defining the het-

erogeneous network representation learning problem. To address the unique chal-

lenges that result from network heterogeneity, we propose the metapath2vec and

metapath2vec++ frameworks that are capable of capturing both the structural and

semantic correlations of nodes and relations with different types. Extensive experi-

ments demonstrate that the learned latent representations by metapath2vec can be

applied to various mining tasks in heterogeneous information networks, including

similarity search, classification, and clustering. We conclude that properly accom-

modating these advantages may further improve the mining and learning tasks in

heterogeneous information networks.

In Chapter 8, we conclude this thesis and look into the future of big network

analytics from a computational perspective.
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PART I

DEMOGRAPHICS IN BIG NETWORKS
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CHAPTER 2

GENDER & AGE IN NETWORKS

2.1 Overview

In this chapter, we harness the power of network and data sciences to model the

interplay between user demographics and social behavior. By studying millions of

users and more than one billion mobile communication records, we unveil the signif-

icant social strategies that are used by people to satisfy their social needs across the

lifespan. Specifically, we investigate the correlations between demographic character-

istics and micro-level social structures—ego networks, social ties, and social triads.

First, we find young people put more focus on enlarging social circles; as they age,

they have the tendency to maintain small but closed social relationships. Second,

we also observe striking gender differences in triadic relationships across individu-

als’ lifespan, that is, the connections among three same-gender users are persistently

maintained over a lifetime, while the opposite-gender triadic relationships disappear

when users enter into their middle-age. Third, we observe frequent cross-generation

interactions that are essential for bridging age gaps as well as cross-gender commu-

nications, in particular during dating active age, that are important for maintaining

romantic relationships. Finally, the present null model demonstrates the statistical

significance of the evolution of social strategies in human communication.

This chapter is largely extracted from previous publications [44, 53]. It is a joint

work with Jie Tang, Yang Yang (THU), Yang Yang (ND), and Nitesh V. Chawla.
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2.2 Introduction

As of 2016, the number of mobile users is 4.611 billion, corresponding to a global

penetration of 62%; The number of mobile subscriptions across the globe reaches

7.377 billion in 2016, which is approximately the same with the world population,

from a recent report by the International Telecommunications Union (ITU). On av-

erage, each mobile user makes, receives or avoids 22 phone calls and sends or receives

text messages 23 times, and checks their phones up to 150 times a day [192]. These

mobile devices record huge amounts of user behavioral data, in particular users’ daily

communications with others. This provides us with an unprecedented opportunity to

study how people build and maintain connections in mobile communication networks.

Previous work on mobile communication networks mainly focused on macro-level

models, like network distributions [164], scale free [54], duration distributions [43,

180], and mobility modeling [47, 77, 223]. Recently, researchers have also started

to pay more attention to the micro-level analysis of the mobile networks. For ex-

ample, Eagle et al. [55] studied the friendship network of 100 specific mobile users

(students or faculties at MIT). They investigated human interactions (what people

do, where they go, and with whom they communicate) based on the machine-sensed

environmental data collected by mobile devices. Meng et al. [143] studied the mo-

bile communication networks of 200 students at the University of Notre Dame. They

explored the interplay between individuals’ evolving interaction patterns and traits.

However, these work did not consider the interplay between user demographics and

communication behavior. More recently, Nokia Research organized the 2012 Mobile

Data Challenge to infer mobile user demographics by using communication records

of 200 users [152, 236]. However, the scale of the network is very limited. In this

chapter, we leverage a large-scale mobile network to study how users’ communication

behaviors correlate with their demographic attributes.
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Younger Older 

Figure 2.1. Evolution of demographic-based social strategies in human
communication.

Contributions. In this chapter, we employ a real-world large mobile network com-

prised of more than 7,000,000 users and over 1,000,000,000 communication records

(voice phone call and short text messaging) as the basis of our study, which we use

to systematically investigate the interplay of user communication behavior and de-

mographic information. Through the study, we first unveil several intriguing social

strategies that users of different age and gender use to meet their social needs, i.e.,

building new connections and maintaining existing relationships. Simultaneously, we

examine the differences between people’s phone call and text messaging behavior.

To the best of our knowledge, we are the first to study the problem of inferring

demographic-based social strategies in such a real-world large mobile network.

This chapter investigates social strategies from both the voice phone call network

and the short text messaging network, and further conclude the networking differ-

ences and similarities between human phone call and text messaging behaviors. In

specific, we examine the interplay between user demographics and three different

types of micro-network structures, including ego networks, interpersonal ties, and

social triads. In addition, we propose to use a null model to validate the statistical

significance of social strategies observed from network structures.

16



Key Findings. Our study unveils the significant social strategies and their evo-

lution across the lifespan in human communication, which are highlighted in Figure

2.1. Specifically, we discover that younger people are very active in broadening their

social circles, while older people tend to maintain smaller but more closed connec-

tions. We find that the communications between two younger opposite-gender users

are more frequent than those between same-gender users. We also observe frequent

cross-generation interactions that are essential for bridging age gaps in family, work-

place, education, and human society as a whole [141]. We unveil that people expand

both same-gender and opposite-gender connections during their active dating period

(18 – 34 years old), while they maintain only same-gender social groups in mobile

communication after 35 years of age. Finally, our analysis shows strong interrelations

between users’ age and gender. For example, a 20-year-old female’s social networking

behavior is distinct from not only a 20-year-old male’s, but also from a 50-year-old

female’s.

2.3 Mobile Network Data with Demographics

The dataset used in this chapter is extracted from a collection of more than

1 billion (1,000,229,603) phone call and text messaging events from an anonymous

country [44, 49, 58, 77], which spans from Aug. 2008 to Sep. 2008. Notice that we

only consider the communications that were made between users within this country.

We construct two undirected and weighted mobile communication networks from the

de-identified and anonymous data: a phone call network (referred to as CALL) and a

text messaging network (referred to as SMS). To represent the human communication

behavior in networks, we place an edge between two users if and only if they have

reciprocal communications (voice calls or text messages) within the observation time-

frame [164]. Specifically, we view each user as a node vi and create an edge eij

between two users vi and vj if and only if they made reciprocal calls or text messages
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TABLE 2.1

THE STATISTICS OF MOBILE NETWORKS

networks #nodes #edges

CALL network with user demographics (CALLd) 7,440,123 32,445,941

SMS network with user demographics (SMSd) 4,505,958 10,913,601

Reciprocal CALL network (CALLr) 4,927,095 16,674,164

Reciprocal SMS network (SMSr) 3,104,853 7,602,830

Largest Connected Component of CALLr (CALLrl) 4,295,638 15,787,538

Largest Connected Component of SMSr (SMSrl) 2,369,078 6,660,172

CALLrl with user demographics (CALLrld / CALL) 4,292,227 15,765,196

SMSrl with user demographics (SMSrld / SMS) 2,064,898 5,689,696

(vi called vj and also vj called vi for at least one time during the observation period).

The strength wij of the edge is defined as the number of communications between

vi and vj per month. Then we extract the largest connected component from each

network as our experimental networks. We also generate the networks by filtering

out the nodes that don’t have demographic information. Table 2.1 lists the order

and size of the resultant CALL and SMS networks. The data does not contain any

communication content.

In this dataset, around 45% of the users are female and 55% are male. We

compare the demographic population distribution of mobile users with the 2008 world

population distribution, which was released by the U.S. Census Bureau international

database1. We find that both female and male users between the ages of 20 and

55 are strongly overrepresented in the mobile population compared to the global

1U.S. Census Bureau. http://www.census.gov/idb/worldpopinfo.html. Jan. 1st, 2014
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TABLE 2.2

THE DISTRIBUTION OF MOBILE USERS’ GENDER AND AGE

Young Young-Adult Middle-Age Senior

Female 4.77% 13.52% 16.16% 10.84%

Male 5.23% 15.96% 19.73% 13.66%

population, while teenagers (under 18 years old) and the elderly (aged 80 or over)

are underrepresented. Thus in our study, we focus on users aged between 18 and 80

years old. To simplify the notations, we use F and M to denote the female and male

users, respectively. Following [17, 95], we also split users into four groups according

to their ages: Young (18 – 24), Young-Adult (25 – 34), Middle-Age (35 – 49), and

Senior (> 49). The distribution of users’ gender and age is listed in Table 2.2.

2.4 Social Strategies in Mobile Communication

Social strategies are used by people to meet their social needs that is, together

with being, having, and doing, considered among the basic human needs [138]. Meet-

ing with new people and strengthening existing relationships belong to the category

of social needs. The mobile communication data provides rich information for discov-

ering and characterizing human social strategies by which people build and maintain

social connections. Previous studies [166] show that the strategies by which social

needs are satisfied change over time, although the needs are constant across one’s

lifetime. In this section, we show how people communicate with each other across

their respective lifetime. Specifically, we investigate the interplay of human communi-

cation interactions and demographic characteristics in the perspective of micro-level

network structures, including ego networks, social ties, and social triads. We also use
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Figure 2.2. Correlations between demographics and network
characteristics. C means attributes observed from the CALL network and

S means the SMS network. F denotes female and M denotes male.

a null model to simulate the observations by randomly shuffling users’ demographic

profiles and report the statistical significance of the results in Section 2.5.

2.4.1 Social Strategies on Ego Networks

An ego network of one person is defined by viewing himself or herself as the central

node and his or her one-degree friends as surrounding nodes [67]. Clearly, one’s ego

network is a sub-network of the original network. Figure 2.1 presents an illustrative
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example of the evolution of one’s ego network. We first examine the characteristics of

the central node (ego) and then the distributions of this ego’s friends (ego network)

with respect to their demographic profiles.

Ego. We present a basic correlation analysis between network characteristics and

user demographics to examine how an individual’s gender and age influence her or

his ego social networks. In particular, we consider the following network metrics:

• Degree Centrality : the number of edges incident upon a node in the network;

• Neighbor Connectivity : the average degree of neighbors of a specific user.

• Triadic Closure: the local clustering coefficient (cc) of each user;

• Embeddedness : the degree that people are enmeshed in networks [81]. More

accurately, a user u’s embeddedness is defined as 1
|Nu|

∑
v∈Nu

|Nu∩Nv |
|Nu∪Nv | , where Nu

is the neighbors of u.

Figure 2.2 plots the correlations between the four network metrics and the users’

age. From sub-figures 2.2(a) – 2.2(b), we observe that the degree and neighbor

connectivity of both female and male users achieve peak values around 22 years old,

then decrease with valleys around 38 – 40 years old. An interesting phenomenon is

that before this valley, the males have clearly higher scores on both metrics (degree

and neighbor connectivity), while the situation is reversed after this point.

From sub-figures 2.2(c) – 2.2(d), we see that both triadic closure and embedded-

ness increase when users become older. Similar to the first two metrics, there is also

a reverse phenomenon at age 38 – 40. The difference lies in that the male’s triadic

closure and embeddedness are at first smaller than the female’s, and then become

larger after the reversion point. All four network metrics are observed at a 95%

confidence interval.

Ego Networks. With one’s ego network, we study the demographic homophily

on both gender and age. The principle of homophily suggests that people tend to be

connected with those who are similar to them [115]. It has been extensively studied
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and verified in both online social networks [120, 130] and mobile networks [43, 110].

Figure 2.3 shows friends’ demographic distribution for female and male users of

different age in the CALL and SMS networks. The x-axis represents a central user’

age from 18 to 80 years old and the y-axis represents the demographic distribution of

that central user’ friends, in which positive numbers denote female friends’ age and

negative numbers denote male friends’. The spectrum color, which extends from dark

blue (low) to yellow (high), represents the probability of one’s friends belonging to

the corresponding age (y-axis) and gender (positive or negative). Interestingly, there

exist highlighted diagonal lines in each sub-figure, which suggests that people tend

to communicate with others of similar age. In particular, the age homophily is much

stronger for people aged between 35 to 55 years old in the CALL network, and 40 to

50 years old in the SMS network. Simultaneously, the highlighted diagonals appear

in the same gender range in both networks, i.e. females appear in the positive Y

range (F) in Figures 2.3(a), 2.3(c) and males in the negative Y range (M) in Figures

2.3(b), 2.3(d), which shows the existence of a high degree of gender homophily in

mobile phone behavior.

Social Strategies. From a sociological perspective, the results in Figures 2.2 and 2.3

can be also explained by different social strategies that people use to maintain their

social connections. First, younger people (who have higher degree centrality) are

very active in broadening their social circles, while older people (who have higher

triadic closure centrality cc) tend to keep smaller but more stable connections. This

finding from large-scale networks coincides with previous survey studies that older

people have lower rates of contact than young people [35, 136]. Second, people tend

to communicate with others of similar gender and age, i.e., gender and age homophily

in mobile communications. Third, young people put increasing focus on the same

generation and decreasing focus on the older generation, and the middle-age people

devote more attention on the younger generation even at the cost of age homophily.
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Figure 2.3. Friends’ demographic distribution in ego networks. x-axis: (a) the age of a female ego in CALL; (b) the age of
male ego in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in SMS. y-axis: the age of the ego’s friends

(positive: female friends, negative: male friends). The spectrum color represents the friends’ demographic distribution.
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2.4.2 Social Strategies on Interpersonal Ties

An interpersonal tie is viewed as the connection between two people, and its

strength represents the extent of closeness of social contacts [164], such as strong

ties [111, 183] and weak ties [80]. In mobile communication networks, tie strength is

defined as the frequency of communications between each pair of users [164, 166].

In Figure 2.4, we use heat maps to visualize the communication frequencies for

different demographics. Figures 2.4(a) and 2.4(e) report the average number of

calls/messages per month between two users. Figures 2.4(b) – 2.4(d) and 2.4(f)

– 2.4(h) detail the analysis by reporting the average numbers of calls/messages be-

tween two male users, two female users, and one male and one female, respectively.

Again, we discover highlighted diagonal lines in Figures 2.4(a) – 2.4(c), which corre-

spond to the gender and age homophily. We also notice that there are highlighted

areas corresponding to cross-generation communications. In Figure 2.4(a), the color

of cross-generation areas that extends from green to yellow indicates that on average

13 calls per month have been made between people aged 20 – 30 and those aged

40 – 50 years old. This potentially corresponds to phone calls between parents and

children, managers and subordinates, and advisors and advisees, etc. These two dis-

coveries can also be observed in Figures 2.4(e) – 2.4(g) in the SMS network but not

as obvious as in the CALL network.

In addition, we observe that the cross-generation phone call communications be-

tween female users seem to be much more frequent than those between male users

(Cf. Figures 2.4(b) and 2.4(c)). Moreover, from Figures 2.4(d) and 2.4(h), we ob-

serve a highlighted yellow area between people aged 18-34 years old, which means

that cross-gender communications are more frequent than those between users of the

same gender. A similar observation has also been reported in the MSN network [120].
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Figure 2.4. Strength of social ties in the CALL and SMS networks. x- and y-axis: age of users with specific gender. The
spectrum color represents the number of phone calls (text messages) per month. (a), (b), (c), (e), (f), and (g) are symmetric.
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Social Strategies. The social strategies unveiled from Figure 2.4 can be sum-

marized as follows. First, frequent cross-generation interactions are maintained to

bridge age gaps in both phone call and text messaging channels. Second, opposite-

gender communication interactions among younger people are much more frequent

than those between same-gender users. However, when people reach the 35 years

of age, reversely, same-gender interactions are more frequent than those between

opposite-gender users.

2.4.3 Social Strategies on Triads

A triad is one of the simplest groupings of individuals in social networks [57].

Three individuals form a triad if and only if each pair of them are friends. Herein,

we investigate how male and female users maintain their social triadic relationships

across their lifetime.

In Figure 2.5, the heat map visualizes the distribution of the minimum age (x-axis)

and maximum age (y-axis) of three users in a closed social triad structure. Figures

2.5(a)/2.5(e) and 2.5(d)/2.5(h) show the same-gender triads: ‘FFF’ and ‘MMM’,

and Figures 2.5(b)/2.5(f) and 2.5(c)/2.5(g) present the age distribution for users in

opposite-gender triads: ‘FFM’ and ‘FMM’. Clearly, the triadic relationships are ob-

served in all four kinds of gender-triads (i.e., ‘FFF’, ‘MMM’, ‘FFM’ and ‘FMM’)

among young people by highlighted yellow areas at the left-bottom corners of each

sub-figure. When entering middle-age (> 35 years old), people only maintain the

same-gender triadic relationships in mobile communications, which is revealed by

the yellow diagonal lines in Figures 2.5(a)/2.5(e) and 2.5(d)/2.5(h). The opposite-

gender triadic relationships vanish when people pass 35 years old observed in Figures

2.5(b)/2.5(f) and 2.5(c)/2.5(g). The instability of opposite-gender triadic relation-

ships and the persistence of same-gender triadic relationships across one’s lifetime

are novel discoveries and reveal the dynamics of human social strategies across their
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lifespan.

Furthermore, the cross-generation triadic relationships are found in the left-middle

light areas in each sub-figure. These left-middle light areas are almost isolated with

other highlighted areas in each sub-figure, then we are curious about the distribu-

tion of the middle age of three users in one social triad. Our further study shows

that the middle age in these triads are similar to either the minimum age (60%) or

the maximum age (40%) among them, which means there are around 60% cross-

generation communication triads are composed of two youths and one middle-age

people, for example, 25-25-45 years old respectively in a triad, the remaining 40% are

two middle-age and one young people, for example, 20-40-40 years old, and no triads

like 20-30-40 years old are observed in this nationwide communication networks.

Social Strategies. The dynamics of gender differences on social decisions indicate

the evolution of social strategies used by people to meet their social needs. People

expand both the same-gender and opposite-gender social circles during the dating

active period. However, people’s attention to opposite-gender groups quickly dis-

appears after entering into middle-age, and the insistence and social investment on

same-gender social groups last for a lifetime.
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(h) Triad MMM in SMS

Figure 2.5. Social triad distribution in the CALL and SMS networks. x-axis: the minimum age of three users in a triad.
y-axis: the maximum age of three users. The spectrum color represents the distributions.
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2.5 The Null Model in Attributed Networks

We validate the statistical significance of the social strategies observed in the

CALL and SMS networks in Section 2.4 by using a null model. The idea of the

statistical test is to compare the demographic-based observations x from empirical

data to those {x̃} provided by the null model, wherein the demographic profiles of

users are randomly shuffled [48, 110]. On the null model, we first randomly assign

the demographic profiles of the users on the underlying communication networks,

and then observe the social strategies that are derived from the randomly allocated

user demographics. We simulate the random process 10,000 times and get the mean

µ(x̃) and standard deviation σ(x̃) of the observations {x̃} on the null model. For

example, we use four data points selected from Figure 2.3 to illustrate the statistical

test, that is, two points (X=20, Y=60) and (X=20, Y=-20) from Figure 2.3(a) and

2.3(b), respectively. Figure 2.6 reports the histograms of shuffled results {x̃} of the

four points. First, it is clear that the true values x (blue lines) observed from Figure

2.3 largely fall out of the shuffled distributions (histogram plots). Further, we can see

that the shuffled distributions are close to the fitted normal distributions (red lines).

Accordingly, we use z-score to examine the numerical gap between the empirical data

x and the randomly shuffled results {x̃} on the null model [193].

z(x) =
x− µ(x̃)

σ(x̃)

A z-score of 0 indicates that there exists no difference between empirical data and the

null model. A positive (negative) z-score represents that the empirical data is over-

(under-) represented than expected by chance. In specific, |z(x)| ≥ 3.3 (corresponding

to p-value≤ 0.001) indicates that the observation from the empirical data is extremely

statistically significant.

The statistical tests are conducted for all the social strategies observed on ego net-
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Figure 2.6. Illustrative cases of shuffled results and true value in CALL.
We select two points from Figure 2.3(a) and two from Figure 2.3(b) to

show the shuffled results. Blue line represents the true values from the data
(Figure 2.3); blue histograms plot the shuffled results; red line represents

the fitted normal density curve.

works, social ties, and social triads in mobile phone call and text messaging behavior.

We associate each observation figure of the social strategies presented in Section 2.4

with the shuffled results and z-score plots. Specifically, the results on ego networks

are shown in Figures 2.7 and 2.8. The shuffled results and z-scores on social ties

in the CALL and SMS networks can be found in Figures 2.9 and 2.10, respectively.

Figures 2.11 and 2.12 present the values of shuffled means and z-scores of the social
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strategies on social triad observed in both the CALL and SMS networks, respectively.

From the figures, we can see that there are large differences between the heatmaps

of the observations (data) and those of the means of 10,000 simulating results (shuf-

fle). Moreover, we find that the color of the areas we are interested in from each

z-score plot tells that |z(x)| ≥ 3.3. That being said, each social strategy we observed

in the mobile communication networks is (extremely) statistically significant.
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Figure 2.7. Friends’ demographic distribution (shuffle). x-axis: (a) the age of a female ego in CALL; (b) the age of male ego
in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in SMS. y-axis: the age of the ego’s friends (positive:

female friends, negative: male friends). The spectrum color represents the friends’ demographic distribution.
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Figure 2.8. Friends’ demographic distribution (z-score). x-axis: (a) the age of a female ego in CALL; (b) the age of male ego
in CALL; (c) the age of a female ego in SMS; (d) the age of a male ego in SMS. y-axis: the age of the ego’s friends (positive:

female friends, negative: male friends). The spectrum color represents the friends’ demographic distribution.
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Figure 2.9. Strength of social ties in the CALL and SMS networks (shuffle). x- and y-axis: age of users with specific gender.
The spectrum color represents the number of calls (messages) per month. (a), (b), (c), (e), (f), and (g) are symmetric.
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Figure 2.10. Strength of social ties in the CALL and SMS networks (z-score). x- and y-axis: age of users with specific
gender. The spectrum color represents the number of calls (messages) per month. (a), (b), (c), (e), (f), and (g) are symmetric.

35



Min Age of FFF
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

FF

20

30

40

50

60

70

80

(a) Triad FFF in CALL

Min Age of FFM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

FM
20

30

40

50

60

70

80

(b) Triad FFM in CALL

Min Age of FMM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

M
M

20

30

40

50

60

70

80

(c) Triad FMM in CALL

Min Age of MMM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f M

M
M

20

30

40

50

60

70

80

× 10-3
0

0.5

1.0

1.5

2.0

2.5

3.0

(d) Triad MMM in CALL

Min Age of FFF
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

FF

20

30

40

50

60

70

80

(e) Triad FFF in SMS

Min Age of FFM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

FM

20

30

40

50

60

70

80

(f) Triad FFM in SMS

Min Age of FMM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f F

M
M

20

30

40

50

60

70

80

(g) Triad FMM in SMS

Min Age of MMM
20 30 40 50 60 70 80

M
ax

 A
ge

 o
f M

M
M

20

30

40

50

60

70

80

× 10-3
0

0.5

1.0

1.5

2.0

2.5

3.0

(h) Triad MMM in SMS

Figure 2.11. Social triad distribution in the CALL and SMS networks (shuffle). x-axis: minimum age of three users in a
triad. y-axis: maximum age of three users. The spectrum color represents the distributions.
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Figure 2.12. Social triad distribution in the CALL and SMS networks (z-score). x-axis: minimum age of three users in a
triad. y-axis: maximum age of three users. The spectrum color represents the distributions.
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2.6 Conclusion

According to our comprehensive analysis on the interplay of demographic profiles

and mobile communications, we unveil striking gender- and age- based networking

differences, which reflect the dynamic social strategies that evolve as a function of

the balance between different social needs across lifespans. In summary, we provide

the following social phenomena relating to mobile communications:

• Figure 2.2 demonstrates that younger people are active in broadening their
social connections, while older people have the tendency to maintain smaller
but more closed connections.

• Figure 2.3 confirms demographic homophily, that being said, people tend to
interact with others with similar gender and age in both phone call and text
messaging channels.

• Figure 2.4 shows that cross-gender social relationships exhibit more frequent
communications than the same-gender ones, and the cross-generation interac-
tions are maintained to pass the torch of family, workforce, and human knowl-
edge from generation to generation in social society.

• Figure 2.5 unveils that people tend to expand their social connections with
females and males alike during younger and more dating-active period, and put
more social investment on maintaining same-gender social groups after entering
into middle-age.

• In addition, the gap between the younger and older people in text-messaging
channel (e.g., Figure 2.5(e)) is larger than that in phone calls (Figure 2.5(a)),
while the difference between males and females (e.g., Figure 2.4(b) vs. 2.4(c)) in
phone-call channel are more significant than that in messaging communications
(Figures 2.4(f) vs. 2.4(g)).

Despite the promising discoveries of the present work, there is still large room

left for future work. First, although we examine the social strategies in two large-

scale mobile networks with millions of users, the results are limited to the data we

used, that is, the mobile communications from one specific country. Second, there

may exist variances on social strategies used by people across different cultural back-

grounds, political systems, and geographical boundaries. Therefore, it is natural to
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examine the observed results in other countries upon the available data. Third, al-

though previous studies have demonstrated that mobile communications can be used

as a proxy to represent human communications, it would generalize our findings be-

yond mobile channels if online social networks with demographic information could

be investigated. Finally, mobile communications are associated with dynamic infor-

mation, making it necessary to further couple our studies between network structures

and user demographics with social dynamics.
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CHAPTER 3

AGE-SPECIFIC SMALL WORLDS

3.1 Overview

In this chapter, we investigate the phenomenon of “age-specific small worlds”

using data from the large-scale mobile communication network used in last chapter

approximating interaction patterns at a societal scale. Rather than asking whether

two random individuals are separated by a small number of links, we ask whether

individuals in specific age groups live in a small world in relation to individuals

from other age groups. Our analysis shows that there is systematic variation in

this age-relative small world effect. Young people live in the “smallest world,” being

separated from other young people and their parents generation via a smaller number

of intermediaries than older individuals. The oldest people live in the “least small

world,” being separated from their same age peers and their younger counterparts by

a larger number of intermediaries. Variation in the small world effect is specific to age

as a node attribute (being absent in the case of gender) and is consistently observed

under several data robustness checks. The discovery of age-specific small worlds is

consistent with well-known social mechanisms affecting the way age interacts with

network connectivity and the relative prevalence of kin ties and non-kin ties observed

in this network. This social pattern has significant implications for our understanding

of generation-specific dynamics of information cascades, diffusion phenomena, and the

spread of fads and fashions.

This chapter is largely extracted from a pre-print manuscript [52]. It is a joint

work with Omar Lizardo and Nitesh V. Chawla.
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3.2 Introduction

The fact that any one individual may be capable of reaching any other one via

a relatively short chain of network intermediaries is a surprising property of human

social networks [227, 228]. This “small world” phenomenon was first documented

in a series of classic contact-tracing experiments conducted by Travers and Milgram

in the 1960s [147, 212], with a recent large-scale Internet-based replication using a

cross-nationally diverse population producing results encouragingly close to those of

the original study [41]. More recently, with the increasing availability of large-scale

network data built from digitally recorded traces of human communication [55, 117],

the existence of the small-world phenomenon has been successfully established us-

ing observational data obtained from large-scale systems featuring millions of actors

(nodes) and billions of links [12, 92, 120]. One attractive feature of this approach is

that it allows for direct calculation of the average number of links separating any two

individuals at very close to the whole network level (e.g. the largest connected com-

ponent in the system). This helps to overcome the key limitation of first generation

research on the small world: namely reliance on indirect inference from completed

chains obtained from the initial subset of seed nodes. Instead, in large-scale small

world research the average of all shortest paths in the network can be calculated

directly, although not without computational cost [12, 120].

While useful for demonstrating the robust existence of an important property of

social networks, a focus on global estimates of the existence of the small world prop-

erty has to rely on averages taken over all nodes in the network irrespective of node

attributes. The disadvantage of this approach is that it may hide structured hetero-

geneity in the extent to which different node classes are actually well-represented by

the average. This becomes more relevant when we consider that people tend to select

contacts with similar social characteristics as themselves [115, 140], a tendency that is

reproduced in the sort of electronic telecommunication platforms that have been the
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subject of recent attention [21, 44, 110]. Because links are not assigned randomly to

node-classes, neither are the number of intermediaries separating a given person from

others of the same (or different) class. In this respect, in the context of human social

networks, it may be more meaningful to investigate the existence of more targeted

realizations of the small world phenomenon, especially with respect to node classes

defined by socially significant attributes such as age, gender, and in some contexts,

race and social class.

As a first step in this direction, in this chapter we investigate the phenomenon of

“age-specific small worlds.” Rather than asking whether any two randomly chosen

individuals are separated by a small number of intermediaries, we ascertain the extent

to which individuals in the same age group tend to live in a small world in relation

to individuals in the same or other generational clusters. We select age as a focal

attribute because it is one of the two (gender being the other one) most powerful

traits structuring interaction and sociability in human groups [25, 35, 135, 167].

3.2.1 Age, Social Networks, and the Small World

What sort of pattern should we expect to observe in terms of the relative strength

of the small world phenomenon across age groups? Sociological research on the con-

nection between the age and kin structure, as well as the relationship between non-kin

connectivity and life course transitions can be of help in developing some expectations

in this regard. Consider the (idealized) model of the connectivity structure between

age and kin groups shown in Fig. 3.1. The figure is meant to encode a series of empir-

ical generalizations taken from relevant work on age, social interaction, and kinship

in anthropology and sociology [22, 36, 78, 135, 136, 167]. The basic idea is that the

bulk of informal socializing outside of the family occurs within generations following

the principle of age homophily [140]. This means that kin ties are the primary link

connecting individuals across generations [9, 136]. Kin ties are distinctive because
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Figure 3.1. Idealized model of the prevalence and strength of kin and
non-kin ties across age groups. Shapes represent three generational groups

arranged from younger (octagonal), to middle-aged (circle), to older
(square). The green edges connecting the shapes represent (idealized)

connections among persons who belong to the same age group but who are
not biologically related (non-kin ties). The red edges represent (idealized)
connections among persons from different age groups who share a biological
relation (kin ties). The thickness of the edge indicates the expected relative
prevalence and strength (e.g typical communication frequency) for those

ties. For the sake of simplicity, cross-generation/non-kin ties are not drawn.

they are largely fixed at birth, are normatively prescribed, and as such display less

variation in prevalence and strength across individuals and groups [22, 167]. This

has implications for the expected pattern of cross-generation connectivity in human

societies.

Research in anthropology and sociology points to the historical transformation of

the structure of kin ties as societies transition into economic and cultural modernity.

As Western (and later non-Western) societies began to industrialize in the the 18th

and 19th centuries, there was a shift towards a “conjugal” (bi-generational) form of

family organization [167], and away from tri or quad-generational co-residential living

arrangements in which grandparents co-resided with both their children and grand-

children [118]. In this respect, the modal household becomes the bi-generational

residence containing only parents and children [178]. In Fig. 3.1, this is indicated
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by the thick vertical lines linking the circle (parent) and octagonal (children) gen-

eration, and by the relatively thinner vertical links connecting the circle and square

(grandparent) and the even thinner lines connecting the octagonal and square.

In addition, note the declining strength of within-generation, cross-kin connectiv-

ity as we move up from the youngest to the older groups in Fig. 3.1. This encodes a

series of stylized facts from sociological work on the relationship between age and so-

cial networks, having implications for the expected pattern of within-generation con-

nectivity at the societal level. First, with regards to younger people, sociological work

on the subject shows that, free from the demands of work, childcare, and other mid-

life responsibilities, younger people are better able to devote relatively large amounts

of time to within-generation socializing outside the family, increasing their connec-

tivity within this age stratum [134]. In addition, younger individuals tend to spend

the majority of their time inhabiting social institutions (such as schools) that encour-

age same-generation non-kin peer group formation and promote sociable interaction

[153]. Second, middle-aged individuals, while continuing to have active dispositions

and capacities for socializing with same-age non-kin others, experience a variety of life

events that lead to a decline in connectivity. These include transition into marriage,

full-time employment, and parenthood [156, 229]. Finally, a long line of research in

sociology, anthropology and gerontology demonstrates that older persons experience

strong declining attachments to same age peers, with all indicators of sociability ex-

periencing steep drops. These include non-kin contact volume, emotional closeness,

and time spent in the presence of others [6, 35, 36, 135, 189, 189]. This also means

that as individuals age and lose same-generation non-kin ties, cross-generational con-

nections to children and other relatives come to form a larger proportion of their

remaining network [9, 136].
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3.2.2 Implications for Age-Specific Small Worlds

Because the small world property is premised on the relative connectivity of in-

dividuals [8] in relation to others, the existence of combined age and kin effects on

social interaction volume should result in predictable consequences for the relative

extent to which individuals of different age groups live in a small world. Generally,

the less connected the members of a given age group are to others of a given node

class (e.g. same or different generation), the less likely they are to be able to reach

those others via a small number of intermediaries. Given the empirical patterns en-

coded in Fig. 3.1, we should then expect that: (a) younger individuals should live

in the smallest of worlds, especially with respect to same-generation others. In ad-

dition, (b) given the existence of relatively strong ties to parental generation (via

the bi-generational household residence mechanism), they should also be separated

by a relatively small (but larger than the same-generation quantity) number of in-

termediaries from members of the parental generation (and vice versa). However,

(c) relatively fractured attachments to the grandparent’s generation produced by

the same bi-generational household structure, should put young people at a longer

sociometric distance from their most older counterparts (and vice versa), while (d)

middle-aged individuals should be in the next “least small” world tier with respect

to same-generation peers. That is, their separation from same-generation others

should be larger than that of corresponding to their children. Middle-aged individ-

uals, should also (e) be relatively close to members of the parental generation via

intermediary kin ties. Finally, (f) older individuals should live in the “least small”

world with respect to same-generation peers, as ties to same-generation others are

selectively pruned leaving only kin-tie mediated attachment to middle-aged members

of their sons and daughters generation as their primary source of sociability.
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3.3 Age-Specific Small Worlds

We begin by addressing the question of whether we can identify age-specific small

worlds. To do so, we use the large-scale mobile phone data used in Chapter 2 cap-

turing patterns of communication at a societal scale. The data is comprised of more

than one billion voice calls and short messaging records spanning two consecutive

months—August and September—in the year 2008 representing about one fifth of

the population of a large industrialized country. These data are appropriate for our

research goals as they have been used profitably in previous studies establishing strong

regularities in human communication and mobility behavior [77, 164]. To represent

this large-scale communication system as a network, we place an edge between two

users if and only if they have reciprocal communications (voice calls or text messages)

within the observation time-frame, ensuring that the links capture significant social

interactions and relationships.

It is possible that any conclusions regarding age-effects in small-world behavior

might be systematically affected by the two month observation window or may not

be unique to the generation-specific processes that we outlined earlier. We address

these issues in four ways. First, we construct communication networks of increasing

temporal scale (using a one-week window), and examine whether our results hold

within each cumulative time slice. Second, we also examine whether the values of

key quantities, such as the average shortest path lengths, show signs of convergence as

we extend the temporal window. Observing such saturation behavior would indicate

that two-months are sufficient to extract steady-state properties of the system. Third,

we examine whether there are differences in small world behavior across age-by-

gender groups, given that gender is a distinct, but equally significant, node-level trait

affecting connectivity patterns. Null findings in this respect would provide additional

evidence for the generational mechanisms proposed. Finally, we trace patterns of

cross-generation connectivity across age-levels and examine whether they provide
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evidence for the connectivity mechanisms illustrated the idealized model depicted in

Figure 3.1.

3.3.1 The Young Live in a Smaller World

The results of the age-specific small world analysis are shown in Figure 3.2 a.

We conduct all analyses on the mobile (phone calls and text messages), phone call

(CALL), text messaging (SMS) networks, as the results are the same regardless of

what communication channel we use as a connectivity criterion (see Figures 3.3 and

3.4). The basic empirical patterns are consistent with expectations. The average

shortest path connectivity in the mobile communication network increases steadily

with age, until about age 35; it then declines until about age 50 and then rises

steadily again into old age. Note that the age markers for the period of increasing

“small worldness” for adults (35-50) correspond closely to the ages at which members

of advanced industrial societies will be forming “downward” kin ties to their children.

Figure 3.2b shows that age specific average-shortest path distances exhibit the

same relative trend with respect to age regardless of the time-window used. To con-

struct the plot, we took the estimates of the average shortest path connectivity of the

50-year-old population as our reference point in each network, putting all time-slice-

specific trend-lines in the same scale. The plot shows that the relative small-world

gaps between members of different generations is essentially identical across time-

windows and can already be observed in the most restricted (one-week) version of

the data. These result are consistent with the claim that two-months of communica-

tion data is sufficient to establish large-scale regularities with respect to shortest-path

behavior in this network. Figure 3.5 provides corroborating evidence for this claim,

showing that the accuracy gains of adding additional layers of data decrease dra-

matically after we cross the three-week cumulative time-slice, with estimates of the

network property under investigation (average shortest path) converging around a
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Figure 3.2. Age-specific small worlds across different time-frames in the
mobile network. The average degrees of separation vary as a function of
age (a); The relative variations of age-specific degrees of separation is
constant (b), that is, in each time-frame the average distance of the

50-year-old people is scaled to 0.

similar steady-state value after the six-week mark (see Figures 3.6 and 3.7 for the

results in phone call and text messaging networks).
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3.3.2 The Young Are Close to the Young

What are the sources of the small world advantage of young people? To answer

this question, we compute average shortest path distances across dyad classes com-

posed of people of different age groups (ranging from 18 through 70). This is shown

in Figure 3.8 a. As expected, the small world advantage of younger individuals comes

from their relative closeness to their same age counterparts (blue shaded area in the

lower left-hand corner of each subplot) coupled with their relative closeness to indi-

viduals in their parent’s generation (about 20 to 30 years older). This is consistent

with sociological work suggesting that the first pattern is due to the formation of

non-kin same generation ties (although ties to siblings in the same generation are

also included here), while the latter are due primarily to kin ties to parents (and

indirectly to other members of the parental generation). Individuals between the

ages of 35 and 50 end up being sociometrically closer to their younger counterparts

(offspring generation) than they are to their own generation, thus explaining the rel-

ative decline in average shortest path distances for individuals within this age range.

This result is consistent with sociological research pointing to the disruption of same-

generation non-kin ties with middle-aged life transitions, and the relative stability

and durability of kin ties to offspring given their non-elective status [167, 229].

As shown in the red-shaded area in the upper-right hand corner of the plot,

the reason why older individuals live in the “least small world.” is due to their

relatively large sociometric distance from members of the same-generation and that

of their immediately preceding (offspring) age group. This is consistent with work

showing steady decline in sociability and connectivity with in elective (non-kin) ties

leaving older persons with non-elective (kin) ties as their only source of connectivity

[136]. As with our previous results, relative age-based patterns of cross-generational

connectivity observed in the 8-week network are also consistently observed in the 1- to

7-week networks (Figures 3.8d – j). This robustness check shows that the age-specific

53



small world effect is independent on restrictions on the temporal window covered by

our data.

Figure 3.8b shows a heatmap illustrating what happens when we shuffle the demo-

graphic attributes of each vertex in the network (leaving both the network structure

and the proportion of vertices belonging to a given age group intact) while computing

the average shortest path distances across age groups for fifty different realizations of

the reshuffled network (see Materials and Methods for details). As shown by the ho-

mogeneous coloring across the figure, age-group differences in average shortest-path

distances to members of other age groups disappear, and all age groups converge to

the average geodesic distance for all pairs in the mobile network (L ≈ 9.7). This

suggests that, consistent with our account, differences across age groups in “small

worldness” emerge as a result of systematic preferences and constraints generating

specific within and cross-generation social attachments in human populations [140].

Figure 3.8c shows a heatmap of the distribution of z-scores obtained from com-

paring the observed average geodesic distances across age groups against what we

would have expected by chance (from the fifty reshuffled realizations of the network

as given in Figure 3.8b). The results confirm that younger individuals live in smaller

worlds in relation to same generation peers and older generation contacts than we

would expect by chance, while older individuals live in larger than expected small

world in relation to same generation peers and members of the immediately preceding

generation (middle-aged individuals).
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Figure 3.8. Average degrees of separation across age groups. The spectrum color represents the average shortest path length
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3.3.3 Null Gender-Specific Small Worlds

To provide corroborating evidence that the mechanisms generating differences in

small world behavior are unique to generational node classes, we investigate whether

there are gender effects in age-specific small worlds. Looking at differences between

men and women is relevant, since other than age, gender is the one characteristic

that has been shown to systematically impact aspects of communication behavior in

social networks [110, 156]. However, if the model presented in Figure 3.1 is on the

right track we should find little or no evidence of gender-by-age specificity in small

worlds, since sociological work shows that the mechanisms generating the age-specific

small-world behavior are common to both men and women.

As Figure 3.11 shows, we find that the pattern of decreasing “small-worldness”

as persons age is common to men and women (see Figures 3.12 and 3.13 for the

results in phone call and text messaging networks). The one exception is the slightly

stronger increase in “small worldness” for women between the ages of 30-50 in rela-

tion to men of the same age. This pattern of results is consistent with the downward

(offspring generation) kin-based connectivity mechanism proposed to explain this ef-

fect, as mothers are more likely to maintain regular interactions with their children

than fathers. Notably, we find that average shortest path estimates do not differ

across dyad pairs classified according to the gender mix (Figures 3.11 b – c). Our

analyses show that the shortest path connectivity between two females (F-F), one

male and one female (M-F), and two males (M-M) follows highly overlapping dis-

tributions (Figure 3.11b) and are not sensitive to time-window restrictions in the

data (Figure 3.11c). Figures 3.11d – f show that the relative sociometric distance

between nodes based on age-classes does not depend on the gender mix as the same

pattern of the young being close to the young being close to their same age peers

and the old being far from other old people is replicated for same gender (d, f) and

different gender (e) dyad classes. Given that previous studies have shown that cross-
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Figure 3.11. Gender-specific small worlds across age groups. The average
distances by age do not vary a lot for female (F) and male (M) in the

8-week mobile network (a); the probability mass functions of shortest path
distances between three different gender pairs overlap with each other in
the 8-week network (b); The average distances between different gender

pairs are the same in all eight networks of different length of time-frames
(c); the spectrum color represents the average shortest path lengths

between two females (d), one male and one female (e), and two males (f) in
the 8-week mobile network. The strong similarities among the three

heatmaps suggest relative age-specificity of mobile small worlds does not
depend on gender in a strong way.

gender interactions are consistently more intense and frequent than those between

same-gender pairs in different communication channels [44, 120], our findings sug-

gests that relative small world differences between age groups are not generated by

heterogeneity in the characteristic link strengths across age-classes.
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Figure 3.12. Gender-specific small worlds across age groups in the CALL
network.
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Figure 3.13. Gender-specific small worlds across age groups in the SMS
network.
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3.3.4 Evidence for Proposed Connectivity Mechanisms

As we noted earlier, sociological and anthropological work on age and social

networks suggests that the mechanism generating age-specific small worlds is that

the cross-age-group connectivity distribution is systematically different for older and

younger persons. More specifically, same-generation (primarily non-kin) sociability

should steadily decline and be replaced by increasing cross-generation (primarily kin-

based) sociability. To examine whether we can observe evidence of this mechanisms

in this network, Figure 3.14 a plots the proportion of ages for each age group that link

them to same generation (plus or minus five years difference), older generation (be-

tween 20 to 30 years older) and younger generation (between 20 to 30 years younger)

groups. All rates are calculated from the mobile electronic communication network.

The findings provide strong evidence for the idealized pattern depicted in Fig-

ure 3.1, suggesting that these are the mechanisms behind the age-specific small world

effects that we observe. Younger individuals (e.g. between the ages of 20 and 35)

have relatively high rates of communicative interaction with both their same age

peers and those in the immediately preceding (parental) generation. However, as

we move up along the x-axis, we see a steady decline in same-generation sociability

and its gradual replacement by cross-generation sociability (20 to 30 years younger).

This is indicative of attrition in same-generation ties for older individuals and their

replacement with cross-generation ties to the immediate kin (child) generation. The

two lines cross at about 60 years of age, which is close to the institutionally mandated

time for retirement from work activity in industrialized Western societies (such as

the one from which the mobile network originated), providing further support for the

model.
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Figure 3.15. Connectivity mechanisms behind age-specific small worlds in
the CALL network.
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the SMS network.

3.4 Materials and Methods

3.4.1 Mobile Phone Networks

We use the mobile phone data used in the previous chapter, which spans between

August and September in 2008 [44, 58, 77]. To investigate the evolution of mobile

small worlds, we choose to use one week as the time unit to create networks of

different durations (weeks). Specifically, we use the first week (Monday, August

4th to Sunday, August 10th, 2008) of communication logs to construct the 1-week

network. Similarly, the k-week network (1< k ≤8) was extracted from the first k

consecutive weeks of data, meaning that the first day of each network always starts

from Monday, August 4th, 2008 and the last day of the 8-week network ends at Sunday,

September 28th, 2008. Further we extract the giant component as the experimental

network from each network [12, 120, 164]. In this way we construct eight mobile

networks of different length of durations from the communication logs, with the

largest and longest-spanning network, the 8-week one composing of 5,171,066 nodes

and 9,885,493 undirected edges. The order and size of the eight mobile, phone call,

and text messaging networks are listed in Table 3.1. Our visualization shows that

63



the combined mobile networks obey the densification power law [121] with a good

fit, that is, the number of edges grow superlinearly in the number of nodes in mobile

communication networks (see Supplementary Figure 3.17).

In the resulting 8-week mobile network, 89% of nodes are associated with the

corresponding users’ gender and age information. We calculate the shortest paths

between all pairs of users and report the results between those with known gender

and age attributes.

3.4.2 Shortest Paths in Big Networks

In this work, rather than employing the sampling and probabilistic methods used

in previous work [12, 120], we instead leverage a 48-core CPU computing server

to determine the exact shortest path length between all pairs of users, that is s =

n × (n − 1)/2 pairs, where n is the number of nodes in each network. We use the

parallel breadth-first search algorithm to compute the shortest paths between all

pairs of users, and more essentially, during each step of search, to record the length

of the shortest path between two users specified by their gender and age information.

In the parallel algorithm, n/48 nodes’ distances to all n nodes are allocated to one

CPU for computation. For example, to compute the shortest path distances between

s ≈ 1.33×1013(n = 5, 171, 066) pairs of users in the largest mobile network (8-week),

each CPU is responsible for s/48 ≈ 2.8× 1011 pairs of users. By using the computer

server with Quad 12 core 2.3 GHz Intel Xeon CPUs E7-4850 (48 cores in total), we

are able to compute the exact shortest path length between all pairs of users within

37 hours for the 8-week mobile network.
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TABLE 3.1

THE STATISTICS OF EIGHT MOBILE NETWORKS

#weeks 1-week 2-week 3-week 4-week 5-week 6-week 7-week 8-week

MOBILE
#nodes 1,406,743 2,698,575 3,444,931 3,958,354 4,371,045 4,686,770 4,948,254 5,171,066

#edges 1,672,693 3,659,144 5,119,451 6,314,822 7,402,307 8,336,223 9,153,808 9,885,493

CALL
#nodes 683,422 1,856,733 2,587,069 3,087,363 3,479,397 3,771,458 3,996,406 4,176,011

#edges 786,952 2,385,335 3,606,013 4,600,727 5,499,004 6,266,175 6,915,723 7,482,933

SMS
#nodes 159,745 570,219 972,996 1,305,151 1,596,555 1,838,026 2,052,003 2,241,307

#edges 172,657 639,635 1,141,875 1,596,942 2,026,486 2,411,111 2,770,033 3,101,637
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in log-log scales. Three networks extracted from different channels obey the

densification power law [121] with a close slopes.

3.5 Discussion and Conclusion

Previous work has shown the “small world” property to be a counter-intuitive but

robust signature of human social networks. The classic work by Milgram [147] as well

as more recent replications using email chains [41] used experimental strategies aimed

at inferring average network diameter from the average length of completed chains.

More recent work using social media and electronic communication data allows for

the computation of average shortest paths at a societal or even “planetary” scale

[12, 92, 120]. However, most of this work remains focused on the small world property

as a feature of the entire network, but has not looked at vertex-level heterogeneity in

the existence of this property.

In this chapter, we ask the question of whether there are age-specific small worlds.

Using a large-scale mobile communication network that approximates the volume of

communication of a large-scale industrialized society, we ask not whether any two

random individuals are separated by a relatively small number of intermediaries.
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Rather, we ask whether individuals in different age groups live in more or less small

worlds in relation to members of other groups. This question is important since age

is one of the few characteristics that has been shown to structure human interaction

in all human societies [157].

Our results reveal systematic heterogeneity in the extent to which people of dif-

ferent ages can be said to live in “more or less” small worlds. The pattern of this

heterogeneity is, in its turn, predictable from well-known regularities uncovered in an-

thropology and sociology related to the relationship between age, sociability, changing

structure of generational living arrangements in modern societies, and the relative

rates of kin-based and non-kin-based connectivity throughout the life-course (see

Figure 3.1). Younger individuals live in the smallest of worlds, both in relation to

same-age peers and cross-generation consociates, while older individuals live in the

“least small” of worlds, being particularly likely to be separated by a larger number

of intermediaries from same-generation peers.

These results have important implications because the small world property of

human social networks lies behind a variety of phenomena associated with processes

of cultural transmission, the emergence of information cascades, and other diffusion

processes. As a rule, shortest connectivity paths between persons facilitate the fast

spread of information and thus contribute to the large-scale adoption of novel beliefs,

behaviors, practices, and products [154, 227]. Our results thus imply that in any given

modern society, due to their greater sociometric proximity to both same-generation

and cross-generation others, younger persons are more likely to serve as the most

effective seeds and most likely conduits for the rapid spread of novel information,

behaviors, practices, and any other element that may be subject to “contagion”

and diffusion dynamics. Older individuals, on the other hand, due to their greater

sociometric isolation from other age groups, are the least likely to play this role.

This implication is consistent with work in sociology and marketing showing that
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such phenomena as fads, fashions, and information/behavior cascades occur more

frequently among the young [75], and that members of older generations are generally

dependent on younger individuals to keep abreast of novel behaviors, products, and

activities [74]. Our work thus reveals that these long standing observations have an

intuitive basis in the sociometric location of the young in relation to the old.

Our results also imply that greater sociometric isolation of older individuals will

result in their being the last to hear or be exposed to novel “viral” practices, beliefs,

and objects net of any dispositional “conservatism” that may come with advanced age

[38]. Thus even older individuals who may be potentially open to new experiences

and be likely candidates for the adoption of innovations, will be at a structural

disadvantage. However, our argument and results do suggest that if older persons

do experience exposure it is more likely to come from cross-generational next of kin

ties (most likely children) than from non-kin same-generation peers. In this respect,

the existence of various “generation gaps” in attitudes, behaviors, and practices may

be as much of a product of the qualitatively distinct social structural position of the

young and the old as it is of cohort-based, period-based, or aging-dynamics.

In this chapter, we have provided a model and a set of tools for how to investigate

heterogeneity in “generic” properties of large-scale networks across vertex attributes.

Future work can build on our current effort and examine the extent to which het-

erogeneity in the small world (and other well-defined network properties) that have

been primarily investigated irrespective of the categorical attributes of vertices in

human social networks do vary in a structured way according to those attributes,

while outlining the implications of this variation for our understanding of important

structural and dynamics processes in such networks.
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CHAPTER 4

DEMOGRAPHIC PREDICTION IN NETWORKS

4.1 Overview

Demographics are widely used in marketing to characterize different types of

customers. In previous two chapters, we discover the correlations between user de-

mographics and network structures. In this chapter, we further study to what extent

users’ demographic profiles can be inferred from their mobile communication patterns.

Specifically, we formalize the demographic prediction problem of inferring users’ gen-

der and age simultaneously. We propose a factor graph-based WhoAmI method to

address the problem by leveraging not only the correlations between network features

and users’ gender/age, but also the interrelations between gender and age. In ad-

dition, we identify a new problem—coupled network demographic prediction across

multiple mobile operators—and present a coupled variant of the WhoAmI method

to address its unique challenges. Our extensive experiments demonstrate both the

effectiveness, scalability, and applicability of the WhoAmI methods. Finally, our

study finds a greater than 80% potential predictability for inferring users’ gender

from phone call behavior and 73% for users’ age from text messaging interactions.

This chapter is largely extracted from previous publications [49, 53]. It is a joint

work with Jie Tang, Yang Yang (THU), Jing Zhang, and Nitesh V. Chawla.

69



4.2 Introduction

In this chapter, we study to what extent users’ demographic information can be

inferred by mobile social networks. We formally define a double-label classification

problem. The objective is to simultaneously infer users’ gender and age by leveraging

their interrelations. This problem is different from traditional classification problems,

where only the correlations between the dependent variable Y and feature vector X

are considered. In this problem, we are given two dependent variables Y (gender)

and Z (age), and a feature vector X. We aim to capture the correlations between

X and Y , X and Z, and the interrelations between Y and Z to simultaneously infer

Y and Z. To address this problem, we present the WhoAmI method, whereby the

interrelations between multiple dependent variables can be modeled. As a result, the

presented WhoAmI method is able to simultaneously infer users’ gender and age.

The experiments demonstrate that the proposed method can achieve an accuracy of

80% for predicting users’ gender and 73% for predicting users’ age according to daily

mobile communication patterns, significantly outperforming (by up to 10% in terms

of F1-Measure shown in Figure 4.1) several alternative methods (Cf. §4.5 for details

of the comparison methods). To scale up the proposed method to handle large-scale

networks, we further develop a distributed learning algorithm, which can reduce the

computational time to sub-linear speedup (9 – 10× with 16 CPU cores) by leveraging

parallel computing.

We further demonstrate one application scenario of demographic prediction in

telecommunication industry. In real world, there are two kinds of mobile subscrip-

tions of a mobile operator: postpaid [230] and prepaid [231]. Specifically, a postpaid

mobile user is required to create an account by providing detailed demographic in-

formation (e.g., name, age, gender, etc.). However, a recent ITU report indicates

that there is still a large portion of prepaid users (also commonly referred to as pay-

as-you-go) who are required to purchase credit in advance of service use. Statistics
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Figure 4.1. Demographic prediction performance. (Cf. §4.5 for details of
the comparison methods).

show that 95% of mobile users in India are prepaid, 80% in Latin America, 70% in

China, 65% in Europe, and 33% in the United States. Even in the U.S., the switch

to prepaid plans was accelerating during the economic recession from 2008. Prepaid

services allow the users to be anonymous—no need to provide any user-specific infor-

mation. In this sense, mobile operators are highly motivated to infer their prepaid

users’ demographic profiles. We take one case study to demonstrate the effectiveness

of our discoveries and methodologies on this real-world application of demographic

prediction for prepaid users.

Coupled Network Demographic Prediction. In addition to its prepaid users,

a mobile operator also does not have the demographic information of users of another

operator. For example, in Figure 4.2 a mobile operator O1 (e.g., AT&T) could have

the communication logs of two O1 users, and one O1 user and one user of another

operator O2 (Verizon) [49]. In real world, O1 does not have the access to the demo-

graphic profiles of its competitor O2’s users. However, it is critical for mobile service

providers to build the demographic profiles of its competitors’ customers. This can
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Figure 4.2. An illustrative example of coupled networks across two mobile
operators. The source network is mobile operator O1’s network. O1 could
also have the demographic information of its own users (postpaid). The
objective is to predict the demographic profiles of users in its competitor

O2’s network.

help them make better marketing strategies (e.g., identifying potential customers and

preventing customer churning). Moreover, by using demographic information, service

providers can supply users with more personalized services and focus on enhancing

the communication experience.

In light of the real scenario in telecommunication, we formalize the coupled net-

work demographic prediction problem, where we have the structure and user de-

mographic information of one (source) network GS (e.g., O1) and the interactions

between this network and another (target) network GT (e.g., O2). The goal is to pre-

dict the demographic attributes of users in the target network. This problem faces

several unique challenges, including the cold start of the target network structure and

as a result, the asymmetry of source and target users’ graph-based features. To ad-

dress them, we present a coupled version of the WhoAmI method. Our experiments

over six pairs of mobile operators demonstrate the predictability of competitors’ user

demographics, enabling the potential for business intelligence across mobile opera-

tors.
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4.3 Demographic Prediction Problems

Let G = (V,E, Y, Z) denote the undirected and weighted mobile network, where

V is a set of |V | = N users and E ⊆ V ×V is a set of communication edges (CALL or

SMS) between users. Each user vi ∈ V is associated with demographic information,

i.e., gender yi ∈ Y and age zi ∈ Z. We further define an attribute matrix X, where

each row xi represents an |xi| dimensional feature vector for user vi. Given this, we

formalize our problem as follows.

Problem 1 Demographic Prediction: Given a partially labeled network G =

(V L, V U , E, Y L, ZL) and the attribute matrix X, where V L is a set of users with

labeled demographic information Y L and ZL, and V U is a set of unlabeled users, the

objective is to learn a function

f : G = (V L, V U , E, Y L, ZL),X→ (Y U , ZU)

to simultaneously predict users’ gender and age, where Y U , ZU are the demographic

information for the unlabeled users V U .

Different from previous work on demographic prediction [17, 95], where users’

gender and age are inferred by modeling P (Y |X) and P (Z|X) separately (see Figure

4.3), our problem here is to model P (Y, Z|G,X) for the joint inference of users’ gender

and age. Specifically, we leverage not only the correlations between X and Y /Z but

also the structural correlations among nodes and interrelations between gender Y

and age Z. The motivation here comes from the fact that there exist strong network

effects and demographic interrelations in human communication behavior, which was

demonstrated in previous chapters. For example, a 20-year-old female’s behavior is

distinct from not only a 20-year-old male’s, but also from a 50-year-old female’s.

In addition, there are usually multiple mobile operators in telecommunication

market—for example, the two mobile operators in Figure 4.2. A mobile operator O1
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features (X) of each node, we propose to further model the structural
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one node’s two labels, that is, Y and Z.

(e.g., AT&T) could have the communication records of its users and also the commu-

nication logs between its users and users of another operator O2 (e.g., Verizon) [49]. It

would be very useful for the operator O1 to have the demographic profiles of users of

its competitor O2 for business intelligence and precision marketing, such as acquiring

new users from and preventing customer churning to competitors.

To solve this problem, we define the concept of coupled networks and formulate

the problem of coupled network demographic prediction across multiple operators in

mobile communication.

Definition 1 Coupled Networks: Given a source network GS = (V S, ES) and a

target network GT = (V T , ET ), they compose coupled networks if there exists a cross

link eij with one node vi ∈ V S and the other node vj ∈ V T . The cross network

GC = (V C , EC) is a bipartite network containing all the cross links in the coupled

networks.

Figure 4.2 shows a typical example of coupled networks with the left network

of mobile operator O1 as the source network GS and the right network of another
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mobile operator O2 as the target network GT . The links between these two networks

represent the communications between users belonging to these two different mobile

operators, which, with their linked nodes in GS and GT , constitute the cross network

GC .

Problem 2 Coupled Network Demographic Prediction: Given the source net-

work GS with its users’ demographic profiles Y S, ZS and the cross network GC in

coupled networks G = (GS, GT , GC), the task is to find a predictive function:

f : GS = (V S, ES, Y S, ZS), GC = (V S, V T , EC)→ (Y T , ZT )

where Y T and ZT are the set of demographic labels—gender and age—of users V T

in the target network GT .

The difference between the coupled network demographic prediction and Problem

1 lies in the cold start of network structures between target users in Problem 2.

For example, in Figure 4.2, the triangle structures (v6, v7, v8), (v1, v6, v7) can not be

observed by the operator O1, making it impossible to leverage the correlations built

upon these structures in the prediction task. The real-world and yet challenging

setting of the coupled network demographic prediction can be directly applied by a

mobile operator to infer the demographic profiles of its competitors’ users, facilitating

the acquirement of new users from competitor operators.

We treat users’ gender as a binary random variable, i.e., Female or Male, and

users’ age as a four-class variable by splitting users’ age into the four groups men-

tioned above [17, 95], i.e., Young (18 – 24), Young-Adult (25 – 34), Middle-Age (35

– 49), and Senior (> 49).
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4.4 The WhoAmI Framework

Leveraging the insights gleaned from our network analysis in previous sections, we

develop a unified model to capture not only the correlations between users’ commu-

nication behaviors and demographic profiles but also the interrelations among users’

different demographic attributes. In our previous work [44], the proposed DFG (Dou-

ble Label Factor Graph) model is only capable of handling the interrelations between

two dependent variables (e.g., gender Y and age Z). In this extension, we generalize

the WhoAmI method to a Multiple Label Factor Graph Model (MFG). The MFG is

general to model the interrelations among multiple (more than two) dependent vari-

ables. To illustrate the way that MFG captures the interrelations between multiple

(> 2) labels, we assume that in addition to one’s gender Y and age Z, each user is

also associated with another demographic attribute S (e.g., income). However, no-

tice that in the mobile data only two demographic attributes—gender and age—are

available. Therefore, in Section 4.5 we use the proposed approach to predict these

two attributes.

To infer users’ demographic attributes in coupled networks, we propose a vari-

ant of the Multiple Label Factor Graph—CoupledMFG—that is able to address the

unique challenges presented in this task. To handle large-scale networks, we further

develop a distributed learning algorithm.

4.4.1 Multiple Label Factor Graph

We define an objective function by maximizing the conditional probability of

users’ gender Y , age Z, and S given their corresponding attributes X and the input

network structure G, i.e., Pθ(Y, Z, S|G,X). The factor graph [112] provides a way

to factorize the “global” probability as a product of “local” factor functions, which
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makes the maximization simple, i.e.,

P (Y, Z, S|G,X) =
P (X, G|Y, Z, S)P (Y, Z, S)

P (X, G)
∝ P (Y, Z, S|G)P (X|Y, Z, S) (4.1)

∝
∏
vi∈V

P (xi|yi, zi, si)
∏
c∈G

P (Yc, Zc, Sc)

where P (Yc, Zc, Sc) denotes the probability of labels given the network structure c

and P (xi|yi, zi, si) is the probability of users’ attributes xi given the labels yi, zi, and

si.

Our proposed model consists of three kinds of factor functions. The first one is an

attribute factor f(yi, zi, si,xi) for capturing correlations between users’ demographics

and communication attributes. The second one is a dyadic factor g(ye, ze, se) for

modeling correlations between users’ demographics and their direct relationships in

ego networks, where Yc in Eq. 4.1 is represented as ye (yi and yj), Zc is denoted by

ze (zi and zj), and Sc by se (si and sj) iff eij ∈ E. The third one is a triadic factor

h(yc, zc, sc) for correlating users’ demographics and triadic relationships in their ego

networks. Similarly, yc refers to yi, yj, yk, while zc refers to zi, zj, zk, and sc is si, sj, sk

when three users vi, vj, vk form a closed triangle structure cijk, i.e., eij, eik, ejk ∈ E.

Therefore, the joint distribution can be further factorized as:

P (Y, Z, S|G,X) =
∏
vi∈V

f(yi, zi, si,xi)×
∏
eij∈E

[g(ye, ze, se)]×
∏

cijk∈G

[h(yc, zc, sc)] (4.2)

Figure 4.4 shows an illustration of our proposed model, which consists of two

layers of nodes. The bottom layer contains random variables and the upper layer

contains the three kinds of factors introduced above. The joint distribution over

the whole set of random variables can be factorized as the product of all factors.

Specifically, we instantiate the three factors as follows.

Attribute Factors. We design the factor f(yi, zi, si,xi) to represent the corre-
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Figure 4.4. An illustration of the proposed WhoAmI model. y., z. and s.
indicate the gender, age, and newly added label of the user vi. xi denotes
communication attributes of the user vi extracted from the mobile network

G. f(yi, zi, si,xi), g(ye, ze, se), and h(yc, zc, sc) respectively represent
attribute factor, dyadic factor, and triadic factor in the proposed model.

lation between user vi’s demographics and her/his network characteristics xi. More

specifically, we instantiate the factor by an exponential-linear function:

f(yi, zi, si,xi) =
1

Wv

exp{αyizisi · xi} (4.3)

where α is one parameter of the proposed model, and Wv is a normalization term.

For each (yi, zi, si), αyizisi is an |x|-length vector, where the k-th dimension indicates

how xik distributes over (yi, zi, si). For example, let’s say xik represents the degree of

user vi. This factor can capture the fact that people with different demographic pro-

files have different network properties shown in Figure 2.2. Traditional probabilistic

graphical models can only model the correlations between features and one single type
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of dependent variable, while our proposed model captures how the features jointly

distribute over multiple dependent variables.

Dyadic Factors. We next define the dyadic factor g(ye, ze, se), where eij ∈ E, to

represent the correlation between user vi and vj’s demographic information. Specifi-

cally, we have

g(ye, ze, se) =



1
We1

exp{β1 · g′1(yi, yj)}

1
We2

exp{β2 · g′2(yi, zi)}

· · ·

1
We14

exp{β14 · g′14(zj, si)}

1
We15

exp{β15 · g′15(si, sj)}

(4.4)

where βp is the model parameter for this type of factor, g′p(·) is defined as a vec-

tor of indicator functions, and Wep is the normalization term. We can enumerate

in total C2
6 = 15 different combinations of each pair of demographic variables from

(yi, yj, zi, zj, si, sj). The intuition behind this is that vi’s friends’ demographics dis-

tribute differently by varying either vi’s own age or gender or income, as Figure 2.3

suggests.

Triadic Factors. We finally define the triadic factor h(yc, zc, sc) to represent the

correlation among the demographics of social triads, where c = {vi, vj, vk|eij, ejk, eik ∈
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E} indicates the closed triangle structure in G. More specifically, we have

h(yc, zc, sc) =



1
Wc1

exp{γ1 · h′1(yi, yj, yk)}

1
Wc2

exp{γ2 · h′2(yi, yj, zi)}

· · ·

1
Wc83

exp{γ83 · h′83(si, sj, zk)}

1
Wc84

exp{γ84 · h′84(si, sj, sk)}

(4.5)

where h′q(·) is the vector of indicator functions and Wcq is the normalization term

similar with Wep . There are C3
9 different kinds of three-variable enumerations from

(yi, yj, yk, zi, zj, zk, si, sj, sk). We use these triadic factors to model the distributions

of user demographics within a closed social triangle (see details in Figure 2.5).

Finally, incorporating Eqs. 4.3, 4.4, 4.5 into Eq. 4.2, we define the objective

function as the log-likelihood of the proposed model as:

O(α, β, γ) =
∑
vi∈V

αyizisixi +
∑
eij∈E

15∑
p=1

βpg
′
p(·) +

∑
cijk∈G

84∑
q=1

γqh
′
q(·)− logW (4.6)

where W = WvWeWc is the global normalization term, We =
∏15

ep=1Wep , and Wc =∏84
cq=1 Wcq .

The technical novelty of the proposed model is that it considers different types

of labels in a unified framework, which differentiates our model from traditional

classification models. By considering three types of labels in this special case, the

main advantage is that our model can characterize the interrelations between different

demographic labels and the structural correlations between different users as well as

correlations between labels and features.
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4.4.2 Feature Definition

Given a network with labeled and unlabeled users, the goal is to infer unlabeled

users’ demographic information, which is in accordance with the real-world applica-

tion scenarios. There are two types of features designed in our experiments, namely

nonstructural attribute features and structural features. Specifically, given an ego

network with one central user v and her/his direct friends, we extract three kinds of

attribute features for this central user v as follows:

Individual attributes are extracted based on the network topological properties

discussed in ego networks. It includes the degree, neighbor connectivity, clustering

coefficient, embeddedness, and weighted degree (#calls or #messages) of each node.

Friend attributes are used to model the demographic distribution of v’s direct

friends in her/his ego network, including the number of connections to female, male,

young, young-adult, middle-age, and senior friends. In the prediction setting, not all

friends of the central user v are labeled with gender or age information, so we extract

the friend attributes only based on her/his labeled friends.

Circle attributes refer to the triadic demographic distribution of v’s ego network.

Because we aim to infer the central user v’s demographics, we count the numbers

of different gender triads, i.e., ‘FF -v’, ‘FM -v’, ‘MM -v’, and different age-group

triads. Let A/B/C/D denote the young/young-adult/middle-age/senior age-groups,

respectively. There are in total ten kinds of triads based on age-groups: ‘AA-v’,

‘AB-v’, ‘AC-v’, ‘AD-v’, ‘BB-v’ ,‘BC-v’ ,‘BD-v’, ‘CC-v’, ‘CD-v’, ‘DD-v’.

Table 4.1 lists 24 nonstructural attribute features used in our models. Notice that

friend and circle attributes can only be extracted from v’s labeled friends. These three

types of attribute features—individual, friend, and circle attributes — are captured

by the attribute factor in our MFG model (Cf. Eq. 4.3).

In addition, the structural features, captured by the dyadic factor (Cf. Eq. 4.4)

and triadic factor (Cf. Eq. 4.5), are designed to model the demographic distributions
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over edges and triangles with both labeled and unlabeled users, which forms one of the

advantages of the proposed factor graph-based model. Together with nonstructural

friend attributes, structural features covered by dyadic factors form friend features.

Similarly, circle features are composed of nonstructural circle attributes and triadic

structural features.

4.4.3 Learning and Inference

The goal of learning the WhoAmI method is to find a configuration for the free

parameters θ = {α, β, γ} that maximize the log-likelihood of the objective function

O(θ) in Eq. 4.6 given by the training set, i.e., θ? = arg maxO(θ).

Learning. We first introduce how we learn the model in a single-processor configu-

ration, and then explain how to extend the learning algorithm to a distributed one

for handling large-scale networks.

To solve the optimization problem, we adopt a gradient decent method (or a

Newton-Raphson method). Specifically, we derive the objective function with respect

to each parameter with regard to our objective function in Eq. 4.6.

∂O(θ)

∂α
= E[

∑
vi∈V

xi]−EPα(Y,Z,S|X)[
∑
vi∈V

xi]

∂O(θ)

∂β
= E[

∑
eij∈E

g′(·)]−EPβ(Y,Z,S|X,G)[
∑
eij∈E

g′(·)]

∂O(θ)

∂γ
= E[

∑
cijk∈G

h′(·)]−EPγ(Y,Z,S|X,G)[
∑
cijk∈G

h′(·)]

(4.7)

where in the first Equation of Eq. 4.7, E[
∑

vi∈V xi] is the expectation of the sum-

mation of the attribute factor functions given the data distribution over Y , Z, S,

and X in the training set, and EPα(Y,Z,S|X)[
∑

vi∈V xi] is the expectation of the sum-

mation of the attribute factor functions given by the estimated model. The other

expectation terms have similar meanings in the other two equations. As the net-
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work structure in the real-world may contain cycles, it is intractable to estimate the

marginal probability in the second terms of Eq. 4.7. In this work, we adopt Loopy

Belief Propagation (LBP) [158] to calculate the marginal probability of P (Y, Z, S)

and compute the expectation terms.

The learning process then can be described as an iterative algorithm. Each iter-

ation contains two steps: First, we call LBP to calculate marginal distributions of

unknown variables Pα(Y, Z, S|X). Second, we update α, β, and γ with the learning

rate η by Eq. 4.8. The learning algorithm terminates when it reaches convergence.

θnew = θold + η · ∂O(θ)

∂θ
(4.8)

Prediction. With the estimated parameter θ, we can now assign the value of

unknown labels Y, Z, S by looking for a label configuration that will maximize the

objective function, i.e. (Y ∗, Z∗, S∗) = arg max O(Y, Z, S|G,X, θ). In this work, we

use the max-sum algorithm [112] to solve the above problem.

Complexity. The complexity of the learning algorithm at each iteration is O(|V | ·

Q + |E| · Q2 + |C| · Q3), where |V |, |E|, |C| are the numbers of users, edges, and

triads in the graph, respectively, and Q is the number of classes of multiple labels.

Specifically, Q = |Y |×|Z|×|S| in the presented model, where |Y | = 2 is the number of

gender labels—male and female, |Z| = 4 is the number of age labels—young, young-

adult, middle-age, and senior, and |S| is the number of income labels. Therefore,

when learning over only gender and age in our prediction experiments, Q is equal to

|Y | × |Z|, that is 8.

4.4.4 Distributed Learning

We further leverage a distributed framework [205, 208] to scale up our model to

handle these large-scale mobile networks. Our distributed learning algorithm utilizes
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Figure 4.5. An illustration of the master-slave learning scheme.

a Message Passing Interface (MPI) framework, by which we can split the network into

small parts and learn the parameters on different processors. As most computing time

is consumed in the first step of our learning algorithm introduced above, we speed

up this learning process by distributing multiple ‘slave’ computing processors for this

step. The second step is calculated in the ‘master’ processor by collecting the results

from all ‘slave’ processors on the first step. An illustrative flow of the two steps can

be found in Figure 4.5.

Specifically, the master-slave based distributed learning framework [205, 208] can

be described in two phases. At the first phase, the large-scale network G is partitioned

into K sub-networks G1, · · · , Gk, · · · , GK of balanced size, and the K sub-networks

are distributed to K ‘slave’ processors. At the second phase, we iteratively learn the

parameters in two steps. At each iteration i, first, each processor can compute the
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local belief on its sub-network Gk according to Eq. 4.9.

Mk,i
t (χt) ∝ fk(χt, ·)

∏
u∈Γ(t)

mk,i
u→t(χt) (4.9)

where χt denotes the nodes in the local factor graph, Γ(t) denotes χt’s neighbors,

and mk,i
u→t denotes the belief (message) propagated from node χu to node χt, which

is defined as the following equation.

mk,i
u→t(χt) ∝

∑
χu

fk(χu, ·)gk(χu, χt)hk(χu, χt, ·)
∏

s∈Γ(u)\t

mk,i−1
s→u (χu) (4.10)

wherein the message will be normalized. Second, the ‘master’ processor collects all

local results obtained from different subgraphs and computes the marginal probability

P (χt|·) according to Eq. 4.11, and updates parameters according to Eqs. 4.7 and 4.8.

P i(χt|·) = σ
K∑
k=1

Mk,i
t (χt) (4.11)

where σ is the normalization constant. This phase is repeated until convergence.

There are three notes for our model implementation. In order to achieve the

balance among different slaves, we partition the nationwide mobile network into K

subgraphs of roughly equal size. The second one is that we first extract all features

for each user from the original full network. We then split it into subgraphs that are

handled by each ‘slave’ processor.

The third point worth noting is that a structural factor has to be eliminated in

the distributed learning framework if it is defined over several nodes that belong to

different subgraphs—for example, the triangle structures (v1, v2, v3) and (v1, v3, v4)

in Figure 4.5. To address this issue, we propose to use virtual nodes [205, 208] to

construct the broken structural factors. For example, to complete the triad factor

over the triangle (v1, v2, v3) that would be ignored in G1 in Figure 4.5, we design a

85



virtual node v′3 in G1. In doing so, the factor graph over G1 will capture the structural

correlations of the three users’ demographic information. As the completion of the

triangle (v1, v2, v3) in G1, it will not be constructed in the other subgraph, that is,

G3. With that said, if three nodes of a triangle are distributed into three subgraphs,

such as (v1, v3, v4), one of the three involved subgraphs will be randomly selected to

complete the triangle and leave the other two ignored.

4.4.5 Coupled Network Learning

Finally, we design a variant of the WhoAmI method to address the challenges in

coupled network demographic prediction. As illustrated in Section 4.3, the problem

faces two unique challenges. First, the missing of the target network structure makes

it impossible to define triadic factors h(·) over three target users, such as the triangle

structure (v6, v7, v8) in Figure 4.2. Second, users’ individual features across different

mobile operators are asymmetric, due to the sparsity of the target network. For

example, the connections between user v1 and users from both the same operator O1

(v2, v3, v4, v5) and the other operator O2 (v6, v7) are observed for counting v1’s degree

centrality, while for user v6 in O2, the associations with O1’s users (v1, v4) can be

observed, and those with target users (v7, v8) are not observable. In this context, the

individual features of source and target users follow different distributions, making

it infeasible for a supervised learning framework.

In light of these issues and our previous work on coupled link prediction [49], we

propose the coupled version of the WhoAmI method—CoupledMFG. By taking the

coupled mobile networks as the input of a factor graph model, we have the following
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joint distribution:

P (Y, Z, S|GS, GC ,X) =
∏
vi∈V S

fS(yi, zi, si,xi)×
∏
vi∈V T

fT (yi, zi, si,xi)

×
∏

eij∈ES
[gS(ye, ze, se)]×

∏
eij∈EC

[gC(ye, ze, se)] (4.12)

×
∏

cijk∈GS
[hS(yc, zc, sc)]×

∏
cijk∈GC

[hC(yc, zc, sc)]

This joint distribution factorizes all factors over the available structures in coupled

networks. The first two terms model the attribute factors for users in source and

target networks, respectively. Recall that one of the challenges is the asymmetry of

users’ individual attributes across these two networks, making it desired to separately

model these two groups of attribute factors fS(·) and fT (·). The remaining four terms

capture the structural correlations in coupled networks. Specifically, the third and

fourth terms model the dyadic correlations, and the fifth and sixth terms model the

triadic correlations in the source and cross networks, respectively. Further, all the

latent variables in gS(·) and hS(·) are labeled, while only partial of latent variables

in gC(·) and hC(·) are known to the model. Take the triadic factor hC(·) over the

triangle (v1, v4, v6) in Figure 4.2 as an example, user v6’s demographic attributes

are not available—in fact, they are the objective of the prediction model—and the

demographics of users v1 and v4 are labeled for the learning algorithm.

One necessary question arises: Do the demographic correlations over edges g(·)

and triangles h(·) follow the same distribution in source and cross networks? Our

examination shows that there exists no significant distinction on the demographic

distributions between source and cross networks. With that said, the semi-supervised

nature of the proposed WhoAmI method enables the joint modeling of structural

factors (g(·) and h(·)) across source and target networks. To do so, we model the

structural factors into the same parameter space. Specifically, we have the following
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ALGORITHM 1: Distributed CoupledMFG Learning Algorithm.

Input: The source network GS, the cross network GC , the node set V T of the
target network GT , and the learning rate η

Output: Parameters θ = (αS, αT , β, γ)

Master initializes θ ← 0;
Master constructs the coupled factor graph according to Eq. 4.12 with
GS, GC , V T ;

Master partitions the input mobile network into K subgraphs of relatively
equal size;

Master completes the broken structural factors with virtual nodes;
Master forwards all subgraphs to slaves [Communication];
repeat

Master broadcasts θ to Slaves [Communication];
for k = 1 → K do

Slave k computes local belief according to Eqs. 4.9 and 4.10;
Slave k sends the local belief to Master [Communication];

end

Master calculates the marginal distribution for each variable according to
Eq. 4.11;

Master calculates the gradient for each parameter according to Eq. 4.7;
Master updates the parameters according to Eq. 4.8;

until Convergence;

log-likelihood objective function for the CoupledMFG model.

O(α, β, γ) =
∑
vi∈V S

αSyizisix
S
i +

∑
vi∈V T

αTyizisix
T
i

+
15∑
p=1

βp
∑

eij∈ES∪EC
g′p(·) +

84∑
q=1

∑
cijk∈GS∪GC

γqh
′
q(·)− logW (4.13)

where the two different parameters αS and αT are designed to separately model the

attribute factors in source and target networks, and on the other hand, both the

parameters β and γ are used to simultaneously model the dyadic and triadic factors

across source and cross networks. In doing so, the CoupledMFG model is enabled to

handle the two challenges in coupled network demographic prediction—the sparseness

of the target network and as a result, the asymmetry of individual features in source
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and target networks.

The distributed learning algorithm for CoupledMFG is presented in Algorithm 1.

In the algorithm, we also mark the communications between Master and Slaves. The

learning algorithm will assign the target users (unlabeled) with demographic labels

that maximize the marginal probabilities.

4.5 Experiments

We present the effectiveness and efficiency of our proposed WhoAmI method on

demographic prediction by various experiments. The code used in the experiment is

publicly available at http://arnetminer.org/demographic.

4.5.1 Experiment Setup

Data and Evaluation. We use two large-scale mobile networks, CALL and SMS,

to infer users’ gender and age. To infer user demographics effectively for mobile

operators, we only consider active users who have at least five contacts in two months.

After filtering out non-active users, there are 1.09 million and 304,000 active users in

the CALL and SMS networks, respectively. We repeat the prediction experiments ten

times, and report the average performance in terms of weighted Precision, Recall, and

F1-Measure. We consider weighted evaluation metrics because every class in female

/ male or young / young-adult / middle-age / senior is as important as each other.

All code is implemented in C++, and prediction experiments are performed in a

server with four 16-core 2.4 GHz AMD Opteron processors with 256GB RAM. We

use the speedup metric with different numbers of computing cores (1-16) to evaluate

the scalability of our distributed learning algorithm.

Comparison Methods. We compare our proposed WhoAmI method that can

capture the interrelation between two types of labels (gender and age) with different

89

http://arnetminer.org/demographic


classification algorithms, including Logistic Regression (LRC), Support Vector Ma-

chine (SVM), Naive Bayes (NB), Random Forest (RF), Bagging (Bag), Gaussian

Radial Basis Function Neural Network (RBF), and Factor Graph Model (FGM).

For LRC, NB, RF, Bag, RBF, we employ Weka [84] and use the default setting and

parameters. For SVM, we use liblinear [63]. For FGM, the model proposed in [130] is

used. Note that our proposed WhoAmI method is equal to FGM if we do not consider

the interrelations between gender and age. In addition, other types of models have

been used for capturing interaction effects from data, such as hierarchical multi-level

models [71, 172]. However, rather than detecting and modeling the nested structures,

the goal of this work is to demonstrate the effects of dyadic and triadic correlations

between users’ demographic attributes. Therefore, those models are not considered

in the experiments.

For all comparison methods, we use the same unstructured features (individual,

friend, and circle attributes) introduced in Feature Definition of Section 4.4.2. For

the graphical models, FGM and WhoAmI, the structural features (dyadic and triadic

factors) are further used to model user demographics on network structure. The

major difference between our WhoAmI method and the FGM model is that WhoAmI

can capture not only the structural correlations between different users, but also the

interrelations between two dependent variables of each user, i.e., gender and age.

4.5.2 Experiment Results

We report the demographic prediction performance for different methods in the

CALL and SMS networks. In prediction experiments, we use 50% of the labeled data

in each network as training set and the remaining 50% for testing.

Predictive Performance. Tables 4.2 and 4.3 show the prediction results of dif-

ferent algorithms on the four prediction cases, i.e., gender and age predictions in the

CALL and SMS networks, respectively. Clearly our WhoAmI method yields better
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performance than the other alternative methods in all four cases. The Bag method

achieves the best prediction results among all non-graphical methods. The FGM

model outperforms a series of non-graphical algorithms by modeling the correlations

among structured nodes via dyadic and triadic factors. The WhoAmI method out-

performs FGM by further leveraging the interrelations between users’ gender and

age. In terms of weighted Precision, Recall, and F1-Measure, WhoAmI achieves up

to 10% improvements compared with the baselines for the prediction of users’ gender

and age. As for Accuracy, the WhoAmI method can infer 80% of the users’ gender in

the CALL network and 73% of the users’ age in the SMS network correctly. Finally,

we observe that the CALL network can reveal more users’ gender information than

the SMS network, as the overall performance of gender prediction in CALL is about

5% higher than that in SMS. However, predicting age from text messaging behavior

is relatively easier than predicting it from phone call communications. The reason

can be reasoned from the discoveries in Section 2.4, where we find that the difference

on the usage of text messages between the young and senior people is more strong

than that in phone call usage, resulting the better performance in age prediction in

SMS than CALL, while the gender homophily in phone calls is more obvious than in

messages, leading to the advantage when predicting gender from the CALL network.

Effects of Demographic Interrelations. We evaluate the effects of demographic

interrelation on the predictions. Without modeling the interrelation between gender

and age, our proposed WhoAmI method degenerates to a basic factor graph model.

From Tables 4.2 and 4.3 , we clearly observe the 2% to 4% improvements achieved by

WhoAmI to FGM on weighted F1-Measure. We further analyze feature contributions

for demographic prediction. Recall that in Feature Definition of Section 4.4.2, be-

sides the individual features, we introduced the friend features (nonstructural friend

attributes and dyadic factors) and circle features (nonstructural circle attributes and

triadic factors). By removing either friend or circle features, we evaluate the de-
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crease in predictive performance in terms of weighted F1-Measure, plotted in Figure

4.6. WhoAmI-df, WhoAmI-dc, and WhoAmI-dfc stand for the removing of friend

features, circle features, and both of them, conditioned on WhoAmI-d without mod-

eling gender and age interrelations. Clearly, we can see that for inferring gender, the

performance when removing circle features drops more than when removing friend

features, which indicates a stronger contribution of circle features to gender pre-

diction than friend features. However, for inferring users’ age, friend features are

more telling than circle features. The feature contribution analysis further validates

our observations of demographic-based social strategies, and demonstrates that the

proposed model works well by capturing the observed phenomena.
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TABLE 4.1

DEFINITION OF NONSTRUCTURAL ATTRIBUTE FEATURES

Attribute Type Name Description

Individual

degree number of contacts

neighbor connectivity average degree of neighbors

clustering coefficient local clustering coefficient

embeddedness common neighbor connectivity

weighted degree #communications

Friend

#female-friends #female contacts

#male-friends #male contacts

#young-friends #young contacts

#young-adult-friends #young-adult contacts

#middle-age-friends #middle-age contacts

#senior-friends #senior contacts

Circle

#v-FF-triangles #FF -v triangles in v’s ego network

#v-FM-triangles #FM -v triangles in v’s ego network

#v-MM-triangles #MM -v triangles in v’s ego network

#v-AA-triangles #AA-v triangles in v’s ego network

#v-AB-triangles #AB-v triangles in v’s ego network

A: young #v-AC-triangles #AC-v triangles in v’s ego network

B: young-adult #v-AD-triangles #AD-v triangles in v’s ego network

C: middle-age #v-BB-triangles #BB-v triangles in v’s ego network

D: senior #v-BC-triangles #BC-v triangles in v’s ego network

#v-BD-triangles #BD-v triangles in v’s ego network

#v-CC-triangles #CC-v triangles in v’s ego network

#v-CD-triangles #CD-v triangles in v’s ego network

#v-DD-triangles #DD-v triangles in v’s ego network
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TABLE 4.2

CALL DEMOGRAPHIC PREDICTION PERFORMANCE

Network Method
Gender Age

wPrecision wRecall wF1-Measure wPrecision wRecall wF1-Measure

CALL

LRC 0.7327 0.7289 0.7245 0.6350 0.6466 0.6337

SVM 0.7327 0.7287 0.7242 0.6369 0.6463 0.6273

NB 0.7222 0.7227 0.7222 0.6246 0.6224 0.6223

RF 0.7437 0.7310 0.7415 0.6382 0.6482 0.6388

Bag 0.7644 0.7648 0.7643 0.6607 0.6688 0.6592

RBF 0.7283 0.7275 0.7252 0.6194 0.6272 0.6218

FGM 0.7658 0.7662 0.7659 0.6998 0.6989 0.6935

WhoAmI 0.8088 0.8076 0.8063 0.7266 0.7140 0.7132
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TABLE 4.3

SMS DEMOGRAPHIC PREDICTION PERFORMANCE

Network Method
Gender Age

wPrecision wRecall wF1-Measure wPrecision wRecall wF1-Measure

SMS

LRC 0.6766 0.6758 0.6689 0.6702 0.6890 0.6630

SVM 0.6749 0.6750 0.6690 0.6654 0.6884 0.6607

NB 0.6231 0.6655 0.6603 0.6563 0.6588 0.6570

RF 0.6399 0.6749 0.6757 0.6623 0.6775 0.6598

Bag 0.6905 0.6918 0.6901 0.6907 0.6987 0.6791

RBF 0.6712 0.6592 0.6468 0.6295 0.6640 0.6356

FGM 0.7132 0.7138 0.7133 0.7154 0.7154 0.7059

WhoAmI 0.7589 0.7549 0.7507 0.7409 0.7303 0.7337
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Figure 4.6. Feature Contribution Analysis. WhoAmI is the proposed
model. WhoAmI-d is the basic version of WhoAmI without modeling the

correlation between gender and age. WhoAmI-df stands for further
ignoring friend features. WhoAmI-dc stands for further ignoring circle

features. WhoAmI-dcf stands for ignoring both friend and circle features.

Scalability. We verify the distributed learning algorithm by partitioning the orig-

inal large-scale networks into multiple sub-networks based on users’ administrative

areas. Users’ areas are determined by their postal codes during subscription registra-

tion. Each sub-network in one area is used as the input for a given core. By utilizing

MPI, our distributed algorithm can achieve 9 – 10× speedup with 16 cores with less

than 2% drop in performance. Basically, our learning algorithm can converge in 100

iterations, and each iteration costs about 2 (SMS) or 5 minutes (CALL) for one sin-

gle processor. By leveraging a distributed learning algorithm, our WhoAmI model is

efficient even for large-scale networks with millions of nodes.

Application—Predicting Prepaid Users. As introduced before, mobile opera-

tors may not have the demographic information of prepaid users, and the percentages

of prepaid users in mobile operators of different countries are different, such as 95% in
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Figure 4.7. Application. Performance of demographic prediction with
different percentages of postpaid users.

India, 80% in Latin America, 70% in China, 65% in Europe, and 33% in America. We

use different ratios of users as training data and the remaining as testing data. In this

way, we can simulate the effects of different percentages of prepaid users on predictive

performance. Figure 4.7 shows the prediction results when varying the percentage of

labeled users in the training set. Clearly, we can see rising trends as the training set

increases in Figure 4.7(a) and 4.7(b). This indicates the positive effects of training

data size on predicting the gender of mobile users. Specifically, we can see that in

this simulation, the performance for predicting the gender of prepaid users can reach
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∼70% in India (5% users as training) in terms of weighted F1-Measure, ∼75% in

China (30% users as training), and ∼83% in America (67% users as training). The

smooth lines in Figure 4.7(c) and 4.7(d) reveal the limited contributions of training

data size on predicting age. We can see that in all cases, obvious improvements can

be obtained by our proposed WhoAmI method with different sizes of training data.

4.5.3 Coupled Network Demographic Prediction

We further study how the coupled variant of the WhoAmI method can be used by

a mobile operator to infer the demographic profiles of its competitors’ users. As the

example illustrated in Figure 4.2, a mobile operator O1 could have the communication

records of its users and also the communication logs between its users and users of

another operator O2 [49]. It would be very useful for the operator O1 to have the

demographic profiles of users of the competitor O2 for business intelligence.

In this mobile dataset, there are three major mobile operators. We denote each

of the three operators as O0, O1, and O2, respectively. Tables 4.4 and 4.5 list the

numbers of active users in the CALL and SMS networks of each operator, and the

numbers of edges within (Oi → Oi) and across different operators (Oi → Oj). We

train the coupled WhoAmI model by taking one operator’s network as the source

network and another one’s as the target network. In total, we construct six pairs of

prediction cases in the CALL and SMS networks, respectively, that is, O0 to O1, O0

to O2, O1 to O0, O1 to O2, O2 to O0, and O2 to O1.

Table 4.6 shows the strong predictability of users’ demographic attributes across

each pair of mobile operators. In general we can see that the predictive performance is

very promising compared to the results in Tables 4.2 and 4.3 . Specifically, the results

demonstrate that the coupled WhoAmI method offers a 67% ∼ 80% predictability for

inferring competitor users’ gender and a greater than 65% potential for the inference

of their age. In other words, a mobile operator would know the demographic profiles
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of as many as more than half of its competitors’ users, enabling the real-world ap-

plication of business intelligence in telecommunication, such as acquiring new users

from competitors through precision marketing.

We also notice that the prediction cases with a larger mobile operator (more users)

as the training data and a smaller operator as the targeting data perform better

than those with them exchanged, i.e., the cases O0 to O1, O0 to O2, and O1 to O2

outperform the cases O1 to O0, O2 to O0, and O2 to O1, where the size |O0| > |O1| >

|O2|. Recall that the coupled prediction task is set in real-world scenarios (Cf. Figure

4.2), that is, the source operator can only observe partial information about the target

network, making it infeasible to compute the user distribution distances between its

users and target operator users. However, to reason about the outperformance when

predicting from Olarge to Osmall, we report the average number of connections of users

from each operator in Tables 4.4 and 4.5. In a composite network of two operators,

such as O0 (large) and O1 (small), O1 users on average have more O0 connections

than O1 connections (1.82 vs. 1.45 in CALL and 1.41 vs. 1.06 in SMS). In other

words, users in a small operator associate more with users of a large operator than

users of the same operator. Not surprisingly, users in the large operator O0 have

higher rates of same-operator contacts than of O1 connections (2.12 vs. 0.88 in

CALL and 1.59 vs. 0.76 in SMS). Consequently, the large operator Olarge is able

to collect rich structural information about target users from its competitors Osmall

who have smaller user base, due to those targets communicate more intensively with

Olarge users than themselves—Osmall. This enables its advantage of more accurately

inferring its competitors’ users, facilitating its marketing strategies and outcomes.
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TABLE 4.4

THE NUMBER OF ACTIVE CALL USERS ACROSS OPERATORS

O0 → O0 O0 → O1 O0 → O2 O1 → O1 O1 → O0 O1 → O2 O2 → O2 O2 → O0 O2 → O1

#users 608,589 608,589 608,589 292,848 292,848 292,848 183,893 183,893 183,893

#edges 1,291,086 534,064 342,845 424,394 534,064 205,487 208,452 342,845 205,487

degree 2.12 0.88 0.56 1.45 1.82 0.70 1.13 1.86 1.12
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TABLE 4.5

THE NUMBER OF ACTIVE SMS USERS ACROSS OPERATORS

O0 → O0 O0 → O1 O0 → O2 O1 → O1 O1 → O0 O1 → O2 O2 → O2 O2 → O0 O2 → O1

#users 161,547 161,547 161,547 87,556 87,556 87,556 56,634 56,634 56,634

#edges 257,154 123,192 72,313 93,342 123,192 46,807 37,660 72,313 46,807

degree 1.59 0.76 0.45 1.06 1.41 0.53 0.66 1.28 0.83
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TABLE 4.6

COUPLED NETWORK DEMOGRAPHIC PREDICTION

Network Case
Gender Age

wPrecision wRecall wF1-Measure wPrecision wRecall wF1-Measure

CALL

O0 to O1 0.7870 0.7800 0.7807 0.7075 0.7087 0.7039

O0 to O2 0.7936 0.7939 0.7818 0.7100 0.7140 0.7085

O1 to O0 0.7404 0.7403 0.7396 0.6986 0.6801 0.6696

O1 to O2 0.7986 0.7979 0.7982 0.7160 0.7167 0.7094

O2 to O0 0.7325 0.7282 0.7251 0.6900 0.6758 0.6622

O2 to O1 0.7810 0.7794 0.7768 0.7147 0.7090 0.6981

SMS

O0 to O1 0.7217 0.7222 0.7219 0.7172 0.7168 0.7049

O0 to O2 0.7329 0.7326 0.7327 0.7240 0.7259 0.7143

O1 to O0 0.6737 0.6713 0.6721 0.6897 0.6734 0.6540

O1 to O2 0.7347 0.7288 0.7285 0.7272 0.7245 0.7095

O2 to O0 0.6831 0.6846 0.6798 0.6885 0.6729 0.6497

O2 to O1 0.7232 0.7201 0.7143 0.7191 0.7152 0.6964
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4.6 Related Work

The availability of mobile phone communication records has offered researchers

many ways to analyze mobile networks, greatly enhancing our understanding of hu-

man mobile behavior [20, 44, 179].

To better model the macro properties of mobile communication networks, Onnela

et al. [164] examine the local and global structure of a society-wide mobile commu-

nication network. Hidalgo and Rodriguez-Sickert [89] investigate the communication

persistence in mobile phone networks. Faloutsos et al. [180] first propose the dou-

ble pareto-lognormal distribution to model the macro properties in call networks,

which is beyond power-law and lognormal distributions. They further discover that

not only the node properties but also clique structures follow the power-law distri-

bution in mobile networks [54]. Recently, the emergence of work on human mobil-

ity [47, 77, 223, 242] and mobile communication networks [7, 68, 194], where human

activities are tracked by mobile phones, provides us a means of understanding and

predicting mobile social behavior. Eagle et al. [55] try to infer the friendship network

in mobile phone data. Tseng et al. [187] aim to discover the valuable user behavior

patterns by mining in mobile commerce environments. Miritello et al. [149] discover

that people follow underpinning strategies to interact with each other due to limited

communication capacity. Meng et al. [143] study the correlations and differences be-

tween mobile and online networking behavior. Calabrese and Blondel et al. [20, 26]

survey the problems, techniques, and results by using mobile phones network data.

However, most previous work focuses on scaling the macroscopic properties of mobile

networks, while our work incorporates the micro-network structure to model human

communication behavior in mobile networks.

Furthermore, there are several works on user demographic and profile modeling.

Existing works try to infer user demographics based on their online browsing [95],

gaming [201] and search [17] behaviors. Herring surveys how online communications
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facilitate gender equality, in particular, empowering women to achieve social identity

that are difficult in offline environment [88]. Leskovec and Horvitz [120] examine

the interplay of the MSN network and user demographic attributes. Mislove et al.

study the demographics of Twitter users [151]. Tang et al. extract and model the

researcher profiles in large-scale collaboration networks [203]. Matthew and Mac-

skassy [144] analyze both the text and the network connectivity of the blogs to infer

the demographics of bloggers. Dong et al. [43] investigate the mobile call duration

behavior in mobile social networks and find that young females tend to make long

phone calls [190], in particular in the evening. Llimona et al. [128] study the impact of

gender and call duration on self-reported customer satisfaction. Macskassy et al. [29]

also learn a label propagation model to infer users’ public profiles in Facebook social

network. Additionally, researchers have used network information to identify user

status differences in email [48, 96] and LinkedIn networks [241]. Nokia research or-

ganized the 2012 Mobile Data Challenge to infer mobile user demographics by using

200 individual communication records without network information [152, 236]. Kova-

nen et al. [110] utilize temporal motifs to reveal demographic homophily in dynamic

communication networks. The main difference between existing work and our efforts

lies in that existing work mainly analyzes demographics (gender, age, status, etc.)

separately, while our analysis and model consider the interrelation among different

demographic attributes.

4.7 Conclusion

In this chapter, we model users’ social decisions on connecting and maintaining

relationships conditioned on their demographic profiles in large-scale mobile com-

munication networks. We engage in answering the question of to what extent user

demographics can be revealed from mobile communication interactions. We formal-

ize a demographic prediction problem to simultaneously infer users’ gender and age,
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and further propose the WhoAmI method to solve it. Experimental results in phone

call and text messaging networks demonstrate both the effectiveness and efficiency of

our proposed model. Meanwhile, we identify a new problem—coupled network demo-

graphic prediction across multiple mobile operators. To address the unique challenges

in this task, we present a coupled variant of the WhoAmI method. Our results un-

veil the predictability of user demographics across competitor networks, enabling the

real-world application scenario of business intelligence in telecommunication.

Despite the promising predictive performance of the present method, there is still

large room left for future work. First, in addition to model phone calls and text

messages separately, it would be interesting to predict user demographics from the

mobile network as a whole by combining the phone call and text messaging networks

into one network. Second, some other social strategies and theories can be explored

and validated for inferring user social traits and attributes. Finally, examining how

the inferred demographics can help other topics in social network analysis, such as

influence propagation, community detection, and network evolution, would also be

very meaningful.
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PART II

DIVERSITY IN BIG NETWORKS
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CHAPTER 5

STRUCTURAL DIVERSITY AND EMBEDDEDNESS

5.1 Overview

Understanding the ways in which local network structures are formed and orga-

nized is a fundamental problem in network science. A widely recognized organizing

principle of networks is structural homophily, which suggests that people with more

common neighbors are more likely to connect with each other. However, what in-

fluence the diverse structures embedded in common neighbors (e.g., and )

have on link formation is much less well understood. To explore this problem, in

this chapter we begin by characterizing the structure of common neighborhoods as

a function of their diversity and embeddedness. Using a collection of 120 large-

scale networks—the biggest with over 60 million nodes and 1.8 billion edges—we

then leverage these structural characteristics to develop a unique network signature,

which we use to uncover several distinct network superfamilies not discoverable by

conventional methods. We demonstrate that the impact of the common neighbor

subgraph on link existence can vary substantially across networks, and we discover

striking cases where it violates the principle of homophily. Our findings suggest that

the common neighborhood signature (CNS) is an intrinsic network property, pointing

to potential advancement in theories of network organization and evolution.

This chapter is largely extracted from a pre-print manuscript [51]. It is a joint

work with Reid A. Johnson, Jian Xu, and Nitesh V. Chawla.
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5.2 Introduction

Since the time of Aristotle, it’s been known that people “love those who are like

themselves” [10]. We now know this as the principle of homophily, which suggests

that the tendency of individuals to associate and bond with similar others drives

the formation of social relationships [115, 140]. The powerful effects of homophily

pervade our everyday lives, silently influencing our most basic relationships from

friendship to marriage [140]. By guiding the formation of relationships, homophily

also plays an important role in the dissemination of information, behavior, and even

health [33]. But homophily applies to more than just shared traits or characteristics:

it applies to the fundamental structure of our relationships as well.

Structural homophily holds that individuals with more friends in common are

more likely to associate [99, 161]. The tendency of individuals to connect based on

structural homophily has been widely explored in network science [3, 125], where it

has been shown to be a strong driving force of link formation over a large assortment

of networks. Yet, while structural homophily accounts for similarity based on the

actual number of common neighbors, it fails to account for the diverse ways in which

these neighbors may be embedded—instead accounted for by phenomena known as

structural diversity [216] and embeddedness [81]. Despite the well-studied impor-

tance of structural homophily, the effects of diversity and embeddedness are much

less well-understood. This leaves many interesting questions concerning the role of

the structure of common neighborhoods unanswered, including how this structure

manifests across networks, how it varies according to the type of network, how well

it concords with the principle of homophily, and how it affects network connectivity

in a neighborhood and beyond.

Motivating example. Consider the real-world scenarios presented in Figure 5.1.

According to structural homophily, the probability that two users vi and vj know each
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Figure 5.1. Structural diversity and embeddedness of common
neighborhoods. Two nodes vi and vj with three disconnected (a), four

disconnected (b), and four connected (c) common neighbors. (d) Different
from structural diversity in an ego-centric notion [216], we go beyond an
ego, and focus on the structural diversity and embeddedness of common
neighborhoods for two persons. (e) Structural diversity and embeddedness

of common neighborhoods affect link existence rate.

other given that they share four common neighbors (CN), as shown in Figure 5.1(b),

is generally higher than when they share only three, as shown in Figure 5.1(a).

Formally, P (eij=1 |#CN=4) > P (eij=1 |#CN=3), where eij=1 denotes the existence

of an edge e between vi and vj. A natural question that arises is how two users’

common neighborhood—that is, the subgraph structure of their common neighbors—

influences the probability that they form a link in the network. For example, let us

assume that vi and vj share four common neighbors. Are vi and vj more likely to

connect with each other if their four common neighbors do not know each other (i.e.,

), as in Figure 5.1(b), or if they all know each other (i.e., ), as in Figure 5.1(c)?

In essence, then, we are interested in the truth of the following inequality:

P (eij=1 | ) ≷ P (eij=1 | ) ?

In this chapter, we formally define the structure of common neighborhoods be-

tween two individuals and study its impact on the probability that these individuals

109



know each other. Our definition of the structure of a common neighborhood is a

mixture of the diversity and embeddedness of common social contexts. Diversity

measures the number of connected components that comprise the common neighbor-

hood, capturing the variable ways in which a neighborhood may be composed [216].

Embeddedness measures the ratio of the number of actual edges to the number of all

possible edges among common neighbors, capturing “the extent that a dyad’s mu-

tual contacts are connected to one another” [79, 81, 219]. Using this formulation, we

study the influence of structural diversity on the formation of (social) relationships

across more than one hundred large-scale networks from a wide range of domains (cf.

Section 5.3), making this the largest empirical analysis done on networks to date.

We leverage our definition of the structural diversity and embeddedness of com-

mon neighborhoods to develop a signature for network superfamily detection. By

employing the common neighborhood signature (CNS) of each network, we are able

to cluster all of the real-world networks used in our study into three distinct super-

families, each of which displays unique link existence patterns. We find that these

superfamilies cannot be uncovered by subgraph significance profiles [148] and other

properties, indicating that the common neighborhood signature provides the ability

to unveil previously undiscovered mechanisms of network organization. This finding

demonstrates that the structure of common neighborhoods can effectively capture

driving forces intrinsic to the formation of local network structures.

We examine how the structure of common neighborhoods impacts link exis-

tence and network connectivity, with in-depth investigations into three large-scale

networks—Friendster, BlogCatalog, and YouTube. Each network is representative of

a distinct network superfamily, with findings that generalize to all networks within

the superfamily. Figure 5.1(e) reports the relative link existence rate between each

pair of users who have at least one common neighbor, conditioned on several rep-

resentative common neighborhoods (x-axis). We observe that with the same edge
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density (embeddedness), the link existence rates given different common neighbor-

hoods (e.g., , , and ) are relatively close. However, we find that when we fix

the size of the common neighborhood (e.g., three common neighbors), an increase in

the structural diversity of the neighborhood (i.e., #components) negatively impacts

the formation of online friendships in Friendster and its network superfamily—that is,

P (e=1| ) < P (e=1| )—while it actually facilitates link formation in BlogCatalog

and its superfamily—that is, P (e=1| ) > P (e=1| ). Other network properties—

including degree distribution, degree sequence, and subgraph frequency—show strong

similarities across the different superfamilies, and thus cannot adequately characterize

the differences we observe in the structural diversity of common neighborhoods.

We also discover striking phenomena where structural diversity and embeddedness

violate the principle of homophily. When applied to the context of common neighbor-

hoods, the principle suggests that P (e=1 |#CN=4) > P (e=1 |#CN=3). However,

if we consider BlogCatalog, for example, we find that the link existence rate of four

common neighbors in a single component is significantly lower than the rate of only

three disconnected common neighbors, i.e., P (e=1| ) < P (e=1| ). Similarly, in

Friendster, homophily is violated when comparing four disconnected common neigh-

bors with three connected common neighbors, i.e., P (e=1| ) > P (e=1| ).

Studying structural diversity and embeddedness in the context of common neigh-

borhoods sheds light on the pursuit to understand the driving forces behind the

organization of neighborhoods in social networks. Our findings also have important,

practical implications for recommendation functions in social networks, such as “Peo-

ple You May Know (PYMK)” in Facebook and LinedIn, as well as “Who to Follow”

in Twitter.
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5.3 Big Network Data

To comprehensively examine our proposed concept of the structural diversity

of common neighborhoods, we have assembled a large collection of big network

datasets from several well-known data platforms, including (in alphabetical order):

AMiner (AMiner Open Science Platform [203]), ASU (Social Computing Data Repos-

itory [238]), KONECT (Koblenz Network Collection [114]), MPI (Social Computing

Research at MPI-SWS [150]), ND (Notre Dame [14]), NetRep (Network Data Repos-

itory [177]), Newman [162], and SNAP (Stanford Large Network Dataset Collec-

tion [191]).

In total, we have compiled a set of 120 large-scale undirected and unweighted

networks from the platforms listed above, including 80 real-world networks and 40

random graphs. We have cleaned the networks as follows: For directed social net-

works, such as mobile phone and SMS networks, we retain only reciprocal connections

as undirected edges. For other directed networks that have no reciprocal connection,

such as citation networks, we convert each directed link into an undirected one. We

have then pruned the resulting undirected networks by removing all duplicate edges

and self-loops, retaining only the largest connected component.

The 80 real networks used in this chapter are shown in Table 5.1, in which cc de-

notes clustering coefficient and d denotes diameter. Due to the large set of networks,

we have labeled them according to the follow nomenclature: type-original-platform.

type denotes the network type, most of which have been previously designated by

their source data platforms (see the taxonomy example in SNAP). For a given net-

work, type can be one of social blog-based (blog-), collaboration (ca-), citation (cit-),

communication (comm-), location-based (loc-), online social (soc-) networks, or web

hyperlink graphs (web-). original denotes the original name of the networks as

provided by each platform. platform denotes the data platform from which the net-

work has been sourced. We note that the largest network used in this work is the
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soc-Friendster-SNAP online social network, which consists of over 65 million nodes

and more than 1.8 billion edges.

To ensure that our study explores a representative sample of network structures,

we also test the concept of structural diversity and embeddedness of common neigh-

borhoods on 40 random graphs, including 10 networks generated by each of the four

models: the Erdős-Rényi (ER) model [59], Barabási-Albert (BA) model [14], Watts-

Strogatz (WS) model [228], and Kronecker model [123]. For the first three models,

the number of nodes is set as 1,000,000. In the ER model, we set the edge creation

probability to between 5×10−6 and 5×10−5 with a step of 5×10−6, thereby generating

10 ER random graphs with the number of edges ranging from roughly 2,000,000 to

25,000,000. We use the BA model to generate 10 BA random graphs with between

2,000,000 and 20,000,000 edges. We use the WS model to generate 10 WS random

graphs by setting different mean degrees k and rewiring probabilities β, where k is

chosen from 8, 12, 16, 20, and 24, and β is 0.2 or 0.8. There are between 2,000,000

and 14,000,000 edges in the WS graphs. Finally, we use 10 Kronecker graphs with the

original parameters (Estimated by Leskovec et al. [123]). fitted to 10 real networks,

which are among the 80 we use above. That means, we would expect the results

discovered from the 10 Kronecker graphs be in close agreement with the correspond-

ing 10 real networks, if Kronecker model was also capable of preserving the common

neighborhood in addition to traditional network properties, such as degree, triangle,

and diameter distributions.

113



TABLE 5.1

THE STATISTICS OF 120 NETWORKS

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

blog-BlogCatalog1-ASU 88784 2093195 47 0.3533 0.0624 9 51193389 2410854351

blog-BlogCatalog2-ASU 97884 1668647 34 0.4921 0.0403 5 40662527 2986356565

blog-BlogCatalog3-ASU 10312 333983 64 0.4632 0.0973 5 5608664 167281662

ca-Actor-ND 374511 15014839 80 0.7788 0.1867 13 346728049 5225759780

ca-AstroPh-Newman 14845 119652 16 0.6696 0.5937 14 754159 3056896

ca-AstroPh-SNAP 17903 196972 22 0.6328 0.4032 14 1350014 8694840

ca-CondMat2003-Newman 27519 116181 8 0.6546 0.3393 16 228093 1788720

ca-CondMat2005-Newman 36458 171735 9 0.6566 0.2903 18 374300 3493465

ca-CondMat-SNAP 21363 91286 8 0.6417 0.3172 15 171051 1446763

ca-CS2004to2008-AMiner 434357 1578275 7 0.6684 0.3705 27 3451794 24501202

ca-CS2006to2010-AMiner 543452 2066296 7 0.6745 0.2939 25 4372725 40256430

ca-CS2009to2010-AMiner 315263 1059740 6 0.6989 0.4181 23 2115515 13063018

ca-CS2011to2012-Aminer 347389 1229716 7 0.7073 0.4004 29 2585990 16787160
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

ca-CS-AMiner 1066379 4594140 8 0.6496 0.1873 24 10312677 154825662

ca-DBLP-SNAP 317080 1049866 6 0.6324 0.3850 23 2224385 15107734

ca-GrQc-SNAP 4158 13422 6 0.5569 1.0829 17 47779 84582

ca-HepPh-SNAP 11204 117619 20 0.6216 1.1768 13 3357890 5202255

ca-HepTh-SNAP 8638 24806 5 0.4816 0.3460 18 27869 213790

ca-Hollywood-NetRep 1069126 56306653 105 0.7664 0.3900 12 4916220615 32896279137

ca-MathSci-NetRep 332689 820644 4 0.4104 0.1504 24 576778 10928378

loc-Brightkite-SNAP 56739 212945 7 0.1734 0.1193 18 494408 11938424

loc-Foursquare-ASU 639014 3214986 10 0.1080 0.0016 4 21651003 39400700856

loc-FourSquare-NetRep 639014 3214986 10 0.1080 0.0016 4 21651003 39400700856

loc-Gowalla-SNAP 196591 950327 9 0.2367 0.0239 16 2273138 283580626

cit-CiteSeer-KONECT 365154 1721981 9 0.1832 0.0513 34 1350310 77658938

cit-Cora-KONECT 23166 89157 7 0.2660 0.1268 20 78791 1786074
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

cit-HepPh-d-SNAP 34401 420784 24 0.2856 0.1613 14 1276859 22468237

cit-HepTh-d-SNAP 27400 352021 25 0.3139 0.1299 15 1478698 32665296

cit-Patents-d-SNAP 3764117 16511740 8 0.0758 0.0703 26 7514922 313229094

comm-CALL-ND 4295638 7893769 3 0.2179 0.1985 45 2253963 31804482

comm-EmailEnron-SNAP 33696 180811 10 0.5092 0.0903 13 725311 23384268

comm-EmailEuAll-SNAP 32430 54397 3 0.1127 0.0273 9 48992 5341634

comm-LinuxKernel-KONECT 10857 76317 14 0.3486 0.1185 13 698240 16977912

comm-Mobile-ND 5324963 10410903 3 0.1811 0.0104 36 2895897 835604293

comm-SMS-ND 2369078 3330086 2 0.0669 0.0013 42 326282 770920401

comm-WikiTalk-SNAP 92117 360767 7 0.0589 0.0483 11 836467 51083880

web-BaiduBaike-KONECT 2107689 16996139 16 0.1171 0.0025 20 25206270 30809207121

web-BerkStan-SNAP 654782 6581871 20 0.6066 0.0069 208 64520617 27786200608

web-Google-SNAP 855802 4291352 10 0.5190 0.0572 24 13356298 686679376
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

web-Hudong-KONECT 1962418 14419760 14 0.0783 0.0035 16 21611635 18660819412

web-Stanford-SNAP 255265 1941926 15 0.6189 0.0086 164 11277977 3907779392

web-WWW-ND 325729 1090108 6 0.2346 0.0931 46 8910005 278151159

soc-Academia-NetRep 137969 369692 5 0.1421 0.0806 21 220641 7995452

soc-Advogato-KONECT 2716 7773 5 0.2233 0.1325 13 5383 116510

soc-BuzzNet-ASU 101163 2763066 54 0.2321 0.0108 5 30919848 8542533935

soc-Catster-NetRep 148826 5447464 73 0.3877 0.0111 10 185462078 50059386906

soc-Delicious-ASU 536108 1365961 5 0.0322 0.0106 14 487972 137770815

soc-Digg-ASU 770799 5907132 15 0.0881 0.0482 18 62710792 3842962151

soc-Dogster-NetRep 426485 8543321 40 0.1710 0.0144 11 83499345 17303939974

soc-Douban-ASU 154908 327162 4 0.0161 0.0104 9 40612 11623280

soc-Epinions1-d-SNAP 75877 405739 10 0.1378 0.0687 15 1624481 69327677

soc-Facebook-MPI 63392 816886 25 0.2218 0.1639 15 3501534 60606675

soc-Flickr-AMiner 214424 9114421 85 0.1464 0.0832 10 132139697 4630544599
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

soc-Flickr-ASU 80513 5899882 146 0.1652 0.2142 6 271601126 3531448904

soc-Flickr-MPI 1624992 15476835 19 0.1892 0.1212 24 548646525 13028541364

soc-Flixter-ASU 2523386 7918801 6 0.0834 0.0138 8 7897122 1711880027

soc-Friendster-ASU 5689498 14067887 4 0.0502 0.0048 9 8722131 5484816732

soc-Friendster-SNAP 65608366 1806067135 55 0.1623 0.0176 37 4173724142 708133792538

soc-GooglePlus-NetRep 78723 319999 8 0.1982 0.2934 59 1386340 12787287

soc-Hamsterster-KONECT 2000 16098 16 0.5401 0.2709 10 52665 530614

soc-Hyves-ASU 1402673 2777419 3 0.0448 0.0016 10 752401 1444870827

soc-LastFM-AMiner 135876 1685158 24 0.1983 0.0946 12 9097399 279291397

soc-LastFM-ASU 1191805 4519330 7 0.0727 0.0131 10 3946207 898270114

soc-Libimseti-KONECT 34339 124722 7 0.0224 0.0265 15 54375 6103992

soc-LinkedIn-AMiner 6725712 19360071 5 0.3700 0.2863 32 12862009 121917817

soc-LiveJournal1-d-SNAP 4843953 42845684 17 0.2743 0.1280 20 285688896 6412296576

soc-LiveJournal-AMiner 3017282 85654975 56 0.1196 0.0017 8 507338233 919635317380
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

soc-LiveJournal-ASU 2238731 12816184 11 0.1270 0.0230 8 28204049 3658174479

soc-LiveJournal-MPI 5189809 48688097 18 0.2749 0.1352 23 310784143 6586074658

soc-LiveJournal-SNAP 3997962 34681189 17 0.2843 0.1368 21 177820130 3722307805

soc-LiveMocha-ASU 104103 2193083 42 0.0544 0.0142 6 3361651 706231197

soc-MySpace-AMiner 853360 5635236 13 0.0433 0.0022 14 1256533 1686861075

soc-Orkut-NetRep 2997166 106349209 70 0.1700 0.0439 9 524643952 35294034217

soc-Orkut-SNAP 3072441 117185083 76 0.1666 0.0424 9 627584181 43742714028

soc-Pokec-d-SNAP 1632803 22301964 27 0.1094 0.0483 14 32557458 1988401184

soc-Prosper-d-KONECT 89171 3329970 74 0.0049 0.0031 8 1158669 1108949447

soc-Slashdot0811-d-SNAP 77360 469180 12 0.0555 0.0246 12 551724 66861129

soc-Slashdot0902-d-SNAP 82168 504230 12 0.0603 0.0245 13 602592 73175813

soc-WikiVote-d-SNAP 7066 100736 28 0.1419 0.1369 7 608389 12720410

soc-YouTube-MPI 1134890 2987624 5 0.0808 0.0062 24 3056386 1465313402

random-ba-2 1000000 1999996 3 0.0001 0.0000 11 435 40304220
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

random-ba-4 1000000 3999984 7 0.0001 0.0001 8 3933 137191058

random-ba-6 1000000 5999964 11 0.0002 0.0001 7 11293 270899331

random-ba-8 1000000 7999936 15 0.0002 0.0002 6 27328 479626736

random-ba-10 1000000 9999900 19 0.0003 0.0002 6 51315 718878801

random-ba-12 1000000 11999856 23 0.0003 0.0003 5 84034 1004827944

random-ba-14 1000000 13999804 27 0.0003 0.0003 5 129967 1344161988

random-ba-16 1000000 15999744 31 0.0004 0.0003 5 187591 1717526329

random-ba-18 1000000 17999676 35 0.0004 0.0004 5 268499 2188921333

random-ba-20 1000000 19999600 39 0.0004 0.0004 5 352033 2631857430

random-er-5e-06 993242 2498898 5 0.0000 0.0000 16 20 12484231

random-er-1e-05 999945 5001782 10 0.0000 0.0000 10 166 50052665

random-er-1.5e-05 1000000 7504667 15 0.0000 0.0000 8 619 112634285

random-er-2e-05 1000000 9998180 19 0.0000 0.0000 7 1366 199917141

random-er-2.5e-05 1000000 12504290 25 0.0000 0.0000 6 2630 312702098
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

random-er-3e-05 1000000 14998486 29 0.0000 0.0000 6 4530 449858883

random-er-3.5e-05 1000000 17498938 34 0.0000 0.0000 5 7274 612427121

random-er-4e-05 1000000 20002664 40 0.0000 0.0000 5 10729 800174659

random-er-4.5e-05 1000000 22499181 44 0.0000 0.0000 5 15196 1012356360

random-er-5e-05 1000000 24997692 49 0.0000 0.0000 5 20825 1249733430

random-k20-800-600-600-400 1048287 20099931 38 0.0001 0.0001 7 47331 1332866503

random-k20-847-641-641-072 740760 3559350 9 0.0004 0.0001 10 11343 249748200

random-k20-900-400-400-600 1047241 8579924 16 0.0002 0.0003 11 19917 196561115

random-k20-900-600-600-100 717728 3527146 9 0.0006 0.0003 12 24180 284289856

random-k20-954-594-594-019 523915 2466409 9 0.0020 0.0005 10 62042 357289819

random-k20-987-571-571-049 554986 2884877 10 0.0028 0.0008 10 131738 473991798

random-k20-999-245-245-691 1003562 2929395 5 0.0052 0.0071 20 56717 24064578

random-k20-999-271-271-587 870759 1810525 4 0.0019 0.0038 23 16253 12983663

random-k20-999-307-307-574 962241 3130762 6 0.0010 0.0020 18 25714 39090320
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TABLE 5.1

Continued

Network Name #nodes #edges degree average cc global cc d #triangles #triplets

random-k20-999-437-437-484 1040130 14000384 26 0.0002 0.0005 11 169897 948885915

random-ws-8-0.2 1000000 4000000 8 0.3346 0.4081 12 3071207 19507015

random-ws-8-0.8 1000000 4000000 8 0.0051 0.0048 9 48121 29769537

random-ws-12-0.2 1000000 6000000 12 0.3532 0.4459 10 7684734 44022926

random-ws-12-0.8 1000000 6000000 12 0.0054 0.0053 7 120214 68515178

random-ws-16-0.2 1000000 8000000 16 0.3619 0.4644 8 14354463 78375140

random-ws-16-0.8 1000000 8000000 16 0.0056 0.0055 7 225119 123159468

random-ws-20-0.2 1000000 10000000 20 0.3660 0.4739 7 23023926 122732295

random-ws-20-0.8 1000000 10000000 20 0.0056 0.0056 6 359942 193720514

random-ws-24-0.2 1000000 12000000 24 0.3694 0.4814 7 33788586 176784043

random-ws-24-0.8 1000000 12000000 24 0.0057 0.0057 6 530929 280173038
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Figure 5.2. Common neighbor characterization. (a) The link existence rate
as the function of #common neighbors. (b) The probability density

function (PDF) of #common neighbors.

5.4 Common Neighborhood Signature (CNS)

In this section, we investigate the principles that drive the formation and or-

ganization of local structures in large-scale networks. In particular, we focus on the

common neighborhood of each pair of users and ask the following question: How does

a pair of individuals’ common neighborhood—the subgraph with their mutual neigh-

bors as nodes and the connections among them as edges—influence the probability

that there exists a link between them?

Formally, we use G = (V,E) to denote an undirected and unweighted network,

where V = {vi} represents the set of nodes and E ⊆ V ×V represents the set of links

between two nodes. We denote each existing link, eij ∈ E, as eij = (vi, vj) = 1 and

each non-existing link, eij /∈ E, as eij = (vi, vj) = 0.

Definition 2 Common Neighborhood: Let N(vi) denote the adjacency list of a

node vi, i.e., vi’s neighborhood. The common neighborhood of each pair of two nodes

vi and vj can be represented as the subgraph composed of their common neighbors,
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Gij = (V ij, Eij), where V ij = N(vi) ∩ N(vj) denotes the common neighbors of vi

and vj, and Eij = {epq | epq ∈ E, vp ∈ V ij, vq ∈ V ij} denotes the edges among their

common neighbors.

Input: Given a network G = (V,E), the input of our problem includes 1) each pair

of users who have at least one common neighbor, i.e., {(vi, vj) = eij | |V ij| ≥ 1} ,

and the common neighborhood Gij = (V ij, Eij) of each pair of users vi and vj.

Structural homophily. The principle of structural homophily suggests that

with more common neighbors, it is more likely for two people to know each other.

Formally, this means that if y > x, then P (eij=1 | |V ij|=y) should generally be larger

than P (eij=1 | |V ij|=x). A long line of work from various fields has demonstrated

that this principle holds across a wide variety of different networks. For example,

Figure 5.2(a) reports the link existence rate between two users (y-axis), conditioned

on the size of their common neighborhood (x-axis) in three representative networks.

We can see that as the number of common neighbors increases, the probability that

two users are connected with each other increases in all three networks as well.

In this study, we revisit this principle of structural homophily, further proposing

to study the structure—specifically, the diversity and embeddedness—of common

neighborhoods. We characterize the structure of a small graph as a function of its

diversity and embeddedness, formalizing its application to common neighborhoods.

Definition 3 Structural Diversity and Embeddedness of Common Neigh-

borhoods: Given a network, G, a pair of users in this network, vi and vj, and the

pair’s common neighborhood, Gij = (V ij, Eij), we define the structure of Gij as a

mixture of its diversity, |C(Gij)|, and embeddedness, d(Gij), where C(Gij) denotes

the connected components in Gij and d(Gij) denotes the edge density of Gij.

Consider a pair of users with four common neighbors. This pair’s common neigh-

borhood has 11 possible configuration structures: , , , , , , ,
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, , , and . In general, we refer to the more diverse structure as the one

with fewer edges and more components.

Output: Our goal is to study the relations between the structure of two users’

common neighborhood and the probability that there exists a link between these two

users. Therefore, given two users vi and vj and their common neighborhood Gij, the

output of our problem is the link existence probability distribution of Gij, that is,

P (eij=1 |Gij).

In each network, we enumerate all pairs of users who have at least one common

neighbor. If we fix the common neighborhood Gij of two users vi and vj, then we

can compute the link existence probability P (eij=1 | Gij) based on the number of

link pairs that exist. To facilitate the comparability of results across networks with

diverse sizes and densities, we define the relative link existence rate R(eij=1 |Gij) as

R(eij=1 |Gij) =
P (eij=1 |Gij)

P (e=1 |#CN=1)
,

where P (e=1 |#CN=1) denotes the link existence probability when two users have

exactly one common neighbor.

Definition 4 Common Neighborhood Signature (CNS): Given a network G =

(V,E), its common neighborhood signature is defined as a vector of relative link ex-

istence rates with respect to the specified common neighborhoods.

Consider, for example, user pairs with between two and four common neighbors.

The common neighborhoods represented by these pairs of users correspond to a vec-

tor of the relative link existence rates for 17 subgraphs (2 subgraphs for common

neighborhoods with size two, 4 for those with size three, and 11 for those with size

four).

Given this input and output, our work seeks to understand the underlying driving

forces behind link formation and network organization by answering the following
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questions:

• Does the common neighborhood signature (CNS) vary across various of net-
works?

• Is the common neighborhood signature (CNS) a fundamental property of net-
works?

• How does the structural configuration of common neighborhoods influence the
link existence probability?

• Does structural diversity and embeddedness concord or conflict with the prin-
ciple of homophily in networks?

• Can structural diversity and embeddedness help to improve link inference?

5.5 CNS for Network Superfamilies

The global structure of network systems are governed by natural laws, through

which constant, universal properties such as long-tailed degree distributions arise.

However, even when subject to the global structures prescribed by these laws, dif-

ferent networks can still reveal distinct local properties and structures. One striking

example is the discovery that networks with long-tailed degree distributions can be

naturally cataloged into distinct superfamilies of networks based on their subgraph

frequencies [148]. In this section, we investigate how the common neighborhood sig-

nature can—like subgraph frequency—uncover previously undiscovered mechanisms

of network organization, thereby allowing it to serve as a fundamental property by

which to catalog networks.

5.5.1 Network Superfamilies

To answer this question, we examine the similarity between the functions of struc-

tural diversity of common neighborhoods across the 120 networks studied. We begin

by constructing, for each network, the common neighborhood signature represented

by neighborhoods with between two and four common neighbors (constituting a 17-

length vector). We then use this signature to compute the similarity in the structural
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Figure 5.3. Correlation coefficient matrix of different methods for 120
networks. (a) Structural diversity signature. (b) Subgraph significance

profile. (c) Sequence of percentile degrees. (d) Bag of degrees. (e) Bag of
#CNs.
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diversity for each pair of networks.

Figure 5.3 visualizes the similarity matrix of the structural diversity profiles be-

tween every pair of networks. The x- and y-axes represent all 120 networks studied in

this work, and the spectrum color represents the correlation coefficient. Note that the

arrangement of rows and columns in the presented similarity matrix is determined by

the Ward variance minimization algorithm for hierarchical clustering [225], and the

similarity between structural diversity profiles is measured by the Pearson correlation

coefficient [148].

Network Superfamilies. We observe two major overlapping clusters on the top

right of the matrix in Figure 5.3(a), which mostly consist of real networks. There

exists several minor clusters on the lower left, which corresponds to most of the

random graphs. The fact that our similarity analysis distinguishes between real and

artificial networks suggests that the common neighborhood signatures capture hidden

properties underlying the network structures.

According to the common neighborhood signature, a total of 36 networks—

including Facebook and Friendster—are grouped together into a single cluster (col-

ored ‘red’ in the dendrogram), wherein the structural diversity of common neighbor-

hoods has similar effects on link formation in each network. Another 29 networks—

including LinkedIn and BlogCatalog—are grouped into another cluster (colored ‘blue’),

indicating strong correlations among these networks but weak correlations between

these networks and those in the red cluster. The overlap of the two clusters, if con-

sidered separately, consists of 24 additional networks (colored ‘gold’). We note that

the networks in the gold cluster (the overlapping part) demonstrate relatively higher

similarity with networks in the red and blue clusters than the networks in the red and

blue clusters demonstrate with each other. Finally, there are 31 remaining networks

(2 real networks and 29 random graphs) that are not clustered into any of the three

aforementioned clusters (colored ‘black’).
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We find that the vast majority of real networks are, based on their common neigh-

borhood signatures, clustered into three major superfamilies (colored red, blue, and

gold in the dendrogram). Each superfamily consists of different types of networks;

for example, the ‘red’ superfamily is mainly composed of social (soc-), film and aca-

demic collaboration (ca-), and email and mobile communication (comm-) networks.

Another observation is that the same type of networks are grouped into different

superfamilies. According to conventional wisdom, for example, the Facebook and

LinkedIn networks both belong to the concept of online social networks (soc-). How-

ever, the Facebook network is indexed in the ‘red’ superfamily, while the LinkedIn

network is indexed in the ‘blue’ superfamily, demonstrating that the structural di-

versity of common neighborhoods actually serves opposing roles in determining link

existence within these two networks.

Random Graphs. We further study how the common neighborhood signatures

qualify the nature of random graphs. Observed from Figure 5.3(a), all Erdős-Rényi

(ER) graphs [59] are densely clustered into the bottom left hierarchy. According to

Watts and Strogatz [228], WS random graphs with the β parameter close to 1 tend

to approach ER random graphs. This theory is captured by the structural diversity

profile, as WS graphs with β=0.8 show the highest similarity with ER graphs.

What we find the most striking is that while WS and BA graphs may imitate

specific superfamilies (blue or gold) real networks (e.g., BlogCatalog and LinkedIn),

none of them are able to simulate an important family (red) of real-world networks

(which includes networks like Facebook, Friendster, and MySpace). Even the 10

Kronecker graphs with the original parameters fitted to 10 real networks do not

belong to any of the three major superfamilies, but form a standalone cluster. These

observations indicate that although the random graph models studied may satisfy

a series of network properties, including scale-free and small-world phenomena, the

common neighborhood signature is a novel network organizational property that is
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not captured by other metrices.

5.5.2 Network Property

Characterization of the global similarity and difference across multiple networks

is conventionally focused on degree distribution [14, 62], degree sequence [61, 163],

and subgraph frequency [148]. To examine the significance of the common neighbor-

hood signature, we need to investigate not only its ability to effectively characterize

networks, but the extent to which these characterizations are distinct from those

provided by conventional methods. Therefore, a crucial question remains: Does the

common neighborhood signature serve as a general, fundamental property of net-

works?

To answer this question, we analyze the common neighborhood signature at

the micro and macro scales over three representative networks (as determined by

the superfamilies discovered in Section 5.5.1)—namely, Friendster, BlogCatalog, and

YouTube. Nevertheless, our findings generally hold for any network within a given

superfamily. As there are several ways to quantify network properties at the global

scale, we compare the common neighborhood signature with the following four con-

ventional approaches: (1) The subgraph significance profile, a numerical vector of

the frequencies (significance level) of different subgraphs [148]. (2) A sequence-of-

percentile-degrees vector of node degrees that are ranked at particular positions (e.g.,

0%, 10%, 20%, . . ., 90%, 100%) of a network’s degree sequence. (3) A bag-of-degrees

vector of occurrence counts of node degrees in a network, which is equal to its degree

distribution. (4) A bag-of-#CNs vector, in which the occurrence counts of common

neighborhood size is vectorized.

At the micro scale, we can examine the visualized distributions of the aforemen-

tioned measures. The four-subgraph distributions (computed by ESCAPE [34]) are

shown in Figure 5.4(b), degree distributions in Figure 5.4(a), and common neighbor-
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Figure 5.4. Degree distribution (a) and four-node subgraph frequency

distribution (b) in three networks.

hood size distributions in Figure 5.2(b). From these figures, we can observe that,

while not identical, each type of distribution reveals similar trends and shapes within

the three networks. We also provide numerical results of the differences between

Friendster and BlogCatalog. The correlation coefficients based on subgraph, sequence

of percentile degrees, bag of degrees, and bag of #CNs are 0.579, 1.000, 0.996, and

0.957, respectively, which are significantly higher than common neighborhood signa-

ture based quantification (−0.267). The strong correlations between Friendster and

BlogCatalog produced by all four alternative methods further highlight their inability

to uncover hidden network properties.

At the macro scale, we can examine heatmaps of the correlation coefficient ma-

trix for each method. The heatmap for the common neighborhood signature is shown

in Figure 5.3(a), while the heatmap for the alternative methods are shown in Fig-

ure 5.3(b)(c)(d)(e). To compare with the common neighborhood signature, the or-

dering of networks in these four matrices are kept identical to that in Figure 5.3(a).

The four resulting matrices fail to show clear and dense clusters, further confirming

the unmatched ability of common neighborhood signatures to detect unique network
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superfamilies. Note that the subgraph significance profile (Figure 5.3(b)) is able to

categorize the networks into different superfamilies if the same clustering algorithm is

applied to the correlation matrix. Based on these results, we argue that the common

neighborhood signature is able to capture underlying mechanisms of network orga-

nization that cannot be discovered by conventional methods such as the subgraph

significance profile [148], degree distribution [62], and degree sequence [163].

Conclusion. Our comprehensive study based on both micro- and macro-level phe-

nomena demonstrates that the common neighborhood signature can detect intrinsic,

hidden network superfamilies that are not discoverable by conventional methods.

These findings suggest that the common neighborhood signature serves as a unique,

fundamental property intrinsic to networks.

5.6 Diversity and Embeddedness in Link Existence

By leveraging the structural diversity signature, we discover three major super-

families from the 80 real-world networks. To further understand how the structural

diversity of common neighborhoods influences link existence in the three superfami-

lies, we focus our investigations on the following three large-scale social networks, each

of which represents a particular network superfamily: Friendster (65,608,366 nodes

and 1,806,067,135 edges) from the ‘red’ superfamily, BlogCatalog (88,784 nodes

and 2,093,195 edges) from the ‘blue’ superfamily, and YouTube (1,134,890 nodes

and 2,987,624 edges) from the ‘gold’ superfamily. (see Figure 5.3(a)). However, our

findings generally hold for any network within a given superfamily.
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Figure 5.5. Structural diversity of common neighborhoods in link existence. The network colors—red, blue, and gold—are in
accordance with the three superfamily hierarchies of the dendrogram in Figure 5.3, respectively. x-axis: two-node, three-node,
and four-node common neighborhoods on the left side; five-node and six-node common neighborhoods on the right side. The

x-axis is ordered according to the following keys: common neighborhood size (ascending), edge density of the common
neighborhood (ascending), and component count of the common neighborhood (ascending). When all three keys are the

same, the degree sequence of the common neighborhood is in descending order. Shading indicates differences in edge density.
Error bars designate the 95% confidence interval.
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5.6.1 Link Existence Correlation

When we control for the size of common neighborhood between two users, how

does its structure influence the probability that they form a link in the network? An

illustrative example of this question is introduced as follows. Given that two users vi

and vj have four common neighbors, are they more likely to connect with each other

if their four common neighbors do not know each other ( ) or if their four common

neighbors already know each other ( ), i.e.,

P (eij=1 | ) ≷ P (eij=1 | ) ?

To address this question, we compute 546 billion, 612 million, and 1.26 billion

pairs of users in the Friendster, BlogCatalog, and YouTube networks, respectively.

Figure 5.5 presents the relative link existence rates in the Friendster, BlogCata-

log, and YouTube networks for neighborhoods with between two and six common

neighbors. It is immediately observable that the impact of structural diversity and

embeddedness on link existence in the three networks is remarkably varied.

We study in detail how the structure—that is, the diversity and embeddedness—

of common neighborhoods influences the link existence. Recall that embeddedness

is measured by the edge count between all pairs of nodes, and diversity is measured

by the number of connected components. In general, if we control the size of com-

mon neighborhood, then as the component count increases, the link existence rate

decreases in Friendster (and its superfamily) but increases in BlogCatalog (and its

superfamily). This finding is illustrated in Figure 5.5 and Figure 5.6(d)(e). This tells

us that users on BlogCatalog are more likely to connect if their common friends are

more structurally diverse, while users on Friendster are more likely to connect if their

common friends are densely embedded in the same community.
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Figure5.6. Diversityandembeddednessvs.linkexistence.(a)(b)(c)Linkexistencerateasafunctionofedgecount
(embeddedness)withonecomponent.(d)(e)(f)Linkexistencerateasafunctionofcomponentcount(diversity).
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For common neighborhoods with the same size (fixed homophily) and compo-

nent count (fixed diversity), we still observe variations in the link existence rate. We

further examine the impact of edge count among common neighborhoods, as distin-

guished by different shadings in Figure 5.5. For a given size of common neighborhood,

if we focus on common neighbor subgraphs with the same edge count (shadings), the

link existence rates are relatively similar to each other. For example, when two users

have four common neighbors, they have similar probabilities to connect if their com-

mon neighborhood forms the following structures: or (four edges), or

or (three edges), or (two edges). On the other hand, with increasing den-

sities in common neighborhoods, as in Figure 5.5 and Figure 5.6(a)(b), the relative

link existence rate increases in Friendster but decreases in BlogCatalog. Indeed, the

embeddedness of the common neighborhood also has a crucial role in determining

link existence in both the Friendster and BlogCatalog networks.

Recall that a common neighborhood with more components is considered more

diverse. If we fix the number of common neighbors, we find that the structural di-

versity of common neighborhoods has a negative effect on the formation of online

friendships in Friendster (and its superfamily) but a positive effect in BlogCatalog

(and its superfamily). This reveals a fundamental difference between these two net-

works and their superfamilies both in their microscopic structures and link formation

mechanisms.

Further, we quantify the impact of embeddedness and diversity on link existence.

Table 5.2 reports the Pearson correlation coefficients ρ between the relative link exis-

tence rate and the structural diversity and embeddedness of common neighborhoods.

We can clearly see that both diversity and embeddedness are strongly correlated

(|ρ| > 0.8) with the link existence rate in Friendster and BlogCatalog, although one

is positively correlated and the other is negatively correlated.
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TABLE 5.2

CORRELATION ANALYSIS FOR RELATIVE LINK EXISTENCE

Network #CN 2 3 4 5 6

Friendster
Embeddedness 1.0 0.94 0.89 0.84 0.81

Diversity −1.0 −0.99 −0.95 −0.88 −0.79

BlogCatalog
Embeddedness −1.0 −0.97 −0.95 −0.95 −0.92

Diversity 1.0 0.98 0.94 0.89 0.67

YouTube
Embeddedness −1.0 −0.84 0.40 0.67 0.50

Diversity 1.0 0.86 −0.38 −0.55 −0.38

Conclusion. We demonstrate that the structural diversity and embeddedness of

common neighborhoods are crucial factors in determining link existence across net-

works. Further, the contrasting influences of common neighborhood structure on the

link existence correspond to networks cataloged to different superfamilies (shown in

Figure 5.3). This observation reaffirms our claim that the common neighborhood

signature (CNS)—the means by which we organize these superfamilies—serves as a

fundamental property of networks.

5.6.2 Violation of Homophily

Previously, we demonstrated that in Friendster’s ‘red’ network superfamily the

structural diversity (embeddedness) of common neighborhoods is in general nega-

tively (positively) associated with link existence, i.e., P (e=1| ) < P (e=1| ),

while in BlogCatalog’s ‘blue’ superfamily it is in general positively (negatively) asso-

ciated with link existence, i.e., P (e=1| ) > P (e=1| ). A subsequent question one

may ask is whether structural diversity and embeddedness conflict with the principle
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of homophily. Specifically, for Friendster, this can be formalized as:

P (e=1| ) > P (e=1| ) ?

In BlogCatalog, the question can be similarly formalized as:

P (e=1| ) > P (e=1| ) ?

Conventional wisdom may answer “yes” to both cases, as the concept of structural

homophily suggests that, all other things equal, relationships are more likely to form

between individuals that share a larger common neighborhood. Surprisingly, however,

we find that there is no empirical evidence to support the existence of homophily

within the context of structural diversity and embeddedness.

In Figure 5.5, we can observe that the link existence rate between two BlogCat-

alog users with densely connected common neighbors is actually lower than the link

existence rate between users with fewer but more loosely connected (more diverse)

neighbors. For example, if two users share four common neighbors, the probability

that there exists a link between them is, in more than half of the eleven configura-

tions ( , , , , , , ), lower than the probability of a link between

users that share three disconnected common neighbors ( ). In fact, P (e=1| ) is

493% higher than P (e=1| ); even P (e=1| ) is higher than P (e=1| ). By con-

trast, in Friendster, homophily is instead violated when a larger number of disjoint

common neighbors meets with a smaller number of connected ones. For example,

the link existence probabilities given and are lower than those given and

. Similar violations can be seen to occur in various cases with different numbers

of common neighborhoods.
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TABLE 5.3

REGRESSION ANALYSIS FOR LINK EXISTENCE RATE

Network Friendster BlogCatalog YouTube

Intercept −0.03845 *** 0.00010 −0.01855 ***

#CN 0.01948 *** 0.00252 *** 0.00792 ***

Embeddedness 0.03234 *** −0.01580 *** 0.00563 **

Diversity −0.01102 *** 0.00114 *** −0.00047

Adj. R2 (CNS) 0.83330 0.76750 0.81440

Adj. R2 (Homophily) 0.42300 0.14260 0.77160

5.6.3 Link Prediction

The configuration of common neighborhoods is crucial in determining link exis-

tence. Often it violates the principle of structural homophily, which demonstrates a

simple and yet effective predictor for inferring link existence. Accordingly, we further

explore the extent to which the diversity and embeddedness of common neighbor-

hoods can help link inference. More formally, we ask which of the following measure-

ments is more accurate,

P (e=1 | ) or P (e=1 |#CN=4) ?

Note that to answer this question, we focus on qualifying the effect of structural

diversity and embeddedness in link inference and its potential for a new unsupervised

link predictor feature, rather than targeting at the link prediction problem.

First, to demonstrate the role of CNS in link inference, we perform a regression

analysis, shown in Table 5.3. We find that, together with the size of common neigh-

139



borhoods (#CN), the two characteristics of CNS—embeddedness and diversity—can

be used as highly accurate predictors of the link existence rate (R2>0.75). We also

find that they serve as statistically significant (p<0.001) factors in the Friendster and

BlogCatalog networks. Observed from the last row of Table 5.3 (Significance code:

* p < 0.05; ** p < 0.01; *** p < 0.001), when predicting for the Friendster and

BlogCatalog networks, we can achieve a far better estimation by using the structural

diversity of common neighborhoods than using only structural homophily (#CN),

as measured by R2. On Friendster, R2 improves from 0.42 to 0.83 (+97%), and on

BlogCatalog, R2 improves from 0.14 to 0.76 (+442%).

Second, we use both structural homophily and CNS as link predictors to infer

whether there exists a link between two users. For structural homophily, we use

#CN as the unsupervised predictor. For structural diversity, we use the linear com-

bination of its two characteristics—density and variety—as the predictor. For these

predictions, we limit the candidate pairs of users to be inferred as those users with

between two and six common neighbors. This generates more than 67 billion, 224

million, and 118 million data instances in the Friendster, BlogCatalog, and YouTube

networks, respectively. We further note that the ratio between positive (existing

links) and negative (non-existing links) instances is highly imbalanced in each net-

work, resulting in difficult prediction tasks.

Table 5.4 shows the link inference performance generated by structural homophily

and diversity on each of the three networks as measured by AUPR and AUROC.

Figure 5.7 illustrates the corresponding precision-recall curves. In terms of AUPR,

the CNS-based unsupervised predictor outperforms the homophily-based predictor

by about 57% in the Friendster and BlogCatalog networks. In terms of AUROC,

CNS also demonstrates greater predictive power than homophily. An application of

the t-test to these results finds that the improvements of the diversity-based predictor

over homophily-based predictor are highly statistically significant (p� 0.001).
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TABLE 5.4

INFERRING LINK EXISTENCE

Metric Method Friendster BlogCatalog YouTube

Data
#Pairs 67,033,108,105 224,786,028 118,635,122

%Positive 0.9183% 0.0943% 0.5082%

AUPR
Homophily 0.02230 0.00178 0.01524

CNS 0.03499 0.00279 0.01532

AUROC
Homophily 0.68539 0.66259 0.69371

CNS 0.71722 0.70239 0.68401

Note that the structural diversity-based predictor does not outperform the struc-

tural homophily-based predictor on the YouTube network. While the lack of im-

provement could be considered disappointing, this result actually further validates

the findings in Figure 5.5, which shows that the impact of the diversity (or Embed-

dedness) of common neighborhoods on link existence can differ among networks of

different superfamilies. Specifically, this result shows that the influence of CNS on

networks in the ‘gold’ superfamily, which includes the YouTube network, is not as

significant as it is for the ‘blue’ and ‘red’ superfamilies. That is, the observed differ-

ence in performance is a consequence of the underlying factors that distinguish the

‘gold’ superfamily from the others.

Conclusion. We provide empirical evidence that the structural diversity and em-

beddedness of common neighborhoods helps the link inference task for networks in

the ‘blue’ and ‘red’ superfamilies, and we demonstrate that this performance reaf-

firms the existence of superfamilies. As a result, we find that the proper application

of CNS has the potential to substantially improve the predictability of link existence,
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Figure 5.7. Precision-recall curves for inference of link existence.

with important implications for improving recommendation functions employed by

social networking sites.

5.7 Related Work

Social theories are the empirical abstraction and interpretation of social phenom-

ena at a societal scale. The idea of homophily, in particular, dates back thousands of

years to Aristotle, who observed that people “love those who are like themselves” [10].

142



In its modern-day conception, the principle of homophily holds that individuals are

more likely to associate and bond with similar others [115, 140]. In the context

of network science, structural homophily suggests that people with more common

neighbors tend to connect with each other [99, 161].

Structural Embeddedness. Granovetter defined embeddedness as “the extent

that a dyad’s mutual contacts are connected to one another” [79, 81], followed by a

line of work that has demonstrated the power of embeddedness in network organiza-

tion and economic development [219]. Note that sometimes this concept can be also

considered “to be the number of common neighbors the two endpoints have” [57, 137].

In this work, we leverage Grannovetter’s definition of embeddedness and refer to “the

number of common neighbors” as structural homophily [94, 99, 161]. But even with a

fixed number of edges between a dyad’s common neighbors, there still exist a diverse

set structures that describe common neighborhoods. How these diverse structures

influence link existence remains an open question in both network and social science.

Structural Diversity. The concept of structural diversity was first proposed in

an ego network by Ugander et al. [216], who found that the user recruitment rate in

Facebook is determined by the variety of an individual’s contact neighborhood, rather

than the size of his or her neighborhood. Further studies show that the diversity of

one’s ego network also has significant influence on a user’s other social decisions [64,

131]. The difference between this work and our study centers around neighborhood

studies. While Ugander et al. study the variety of a single individual’s contact

neighborhood, we instead focus on the structural diversity of a pair of individual’s

common neighborhoods.

Other studies have leveraged the concept of common neighborhoods [27]. Back-

strom and Kleinberg designed a new tie strength metric—dispersion—based on the

connections among mutual friends, which can be used to accurately infer one’s signif-

icant other (e.g., husband or wife and fiancé or fiancée) from Facebook. Their goal,
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however, is to classify the type of existing social tie, while we aim to quantify the

diversity of common neighborhoods of both connected and non-connected users.

Subgraph and Network Superfamily. Our work is also related to subgraph

(motif) frequency. Milo et al. investigated the distributions of subgraph frequency

across multiple types of networks, and proposed a subgraph-based significance pro-

file for networks [148]. By leveraging this profile, they discovered several network

superfamilies, whereby networks in the same superfamily display similar subgraph

distributions. Recently, Ugander et al. developed a framework to investigate sub-

graph frequencies in real networks, which is able to characterize both the empirical

as well as extremal geography of large graphs [217]. However, our work is different

from subgraph mining [148, 217], graph classification [108], and the graph isomor-

phism problem [218]. Instead of these topics, our focus is on uncovering the principles

that drive the formation of local network structure and exploring the significance of

structural diversity in driving link organization and network superfamily detection.

Finally, the structural diversity of common neighborhoods also offers substantial

potential for applications to other important network mining tasks, including so-

cial recommendation [102], tie strength modeling [11, 80, 232], structural hole [129],

community detection [122], and network evolution [121]. Structural diversity also

has connections with heterogeneous network analysis [196], wherein diversity and

embeddedness can be measured among different types of nodes and links.

5.8 Conclusion

Through this chapter, we study how the different common neighborhood struc-

tures can influence network configurations, and we examine the implications of these

observations for how we organize networks. Through a comprehensive study of 120

big real-world and random networks, we conclude that, controlling for the number

of common neighbors, the structure of common neighborhoods—particularly their
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diversity and embeddedness—exhibits substantial influence on link existence rates.

Surprisingly, although the principle of homophily has been acknowledged to hold over

a wide variety of networks, we find that common neighborhood structure demon-

strates properties that conflict with that of homophily.

We further define the common neighborhood signature (CNS), which serves as a

fundamental property of a network similar to degree distribution, degree sequence,

and subgraph distribution, but which classify the 100+ networks into three unique

superfamilies not discoverable by conventional properties. Strikingly, we find that

LinkedIn and Facebook belong to different network superfamilies. For example,

when the size of common neighborhood is fixed to 3, an increase of its embed-

dedness negatively impacts the formation of professional relationship in LinkedIn

and its superfamily—that is, P (e=1| ) < P (e=1| )—while it actually facili-

tates the formation of online friendship in Facebook and its superfamily—that is,

P (e=1| ) < P (e=1| ), signifying important implications for “PYMK” in both

services.

Furthermore, a study of representative random graph models (ER, WS, BA, and

Kronecker) shows that none of the models is able to simulate a particular superfamily

of real-world networks (which involves Facebook, Friendster and so on). This not only

demonstrates the power of the CNS as a new, fundamental property of networks, but

also provides new opportunities and suggestions for building random graph models.

Our next step will be to extend our examination of common neighborhood struc-

ture beyond homogeneous and static networks, further including heterogeneous net-

works and dynamic, inter-genre, attributed networks. In addition, we would like to

examine the interrelations between the two characteristics of common neighborhoods—

diversity and embeddedness. Finally, we intend to incorporate the CNS into machine

learning frameworks to improve social recommendation performance.
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CHAPTER 6

TOPIC DIVERSITY AND AUTHORITY

6.1 Overview

A widely used measure of scientific impact is citations. However, due to their

heavy-tailed distribution, citations are fundamentally difficult to predict. Instead,

to characterize scientific impact, in this chapter we address two analogous questions

asked by many scientific researchers: “How will my h-index evolve over time, and

which of my previously or newly published papers will contribute to it?” To an-

swer these questions, we perform two related tasks. First, we develop a model to

predict authors’ future h-indices based on their current scientific impact. Second,

we examine the factors that drive papers—either previously or newly published—to

increase their authors’ predicted future h-indices. By leveraging relevant factors, we

can predict an author’s h-index in five years with an R2 value of 0.92 and whether a

previously (newly) published paper will contribute to this future h-index with an F1

score of 0.99 (0.77). We find that topical authority and publication venue are crucial

to these effective predictions, while topic popularity and diversity are surprisingly

inconsequential. Further, we develop an online tool that allows users to generate in-

formed h-index predictions. This chapter demonstrates the predictability of scientific

impact, and can help scholars to effectively leverage their position of “standing on

the shoulders of giants.”

This chapter is largely extracted from previous publications [45, 50]. It is a joint

work with Reid A. Johnson and Nitesh V. Chawla.
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6.2 Introduction

Scientific impact plays a pivotal role in the evaluation of the output of scholars, de-

partments, and institutions. Scientific researchers generate scientific impact through

novel discoveries and developments, which are traditionally disseminated to a wider

community via publications. The impact of each of these findings and corresponding

publications—both to a field of research and, by extension, to the reputation of the

author—can be affected by a variety of factors, which may be directly or indirectly re-

lated to the findings themselves. Due to the confluence of such factors, a researcher’s

body of work is likely to be composed of findings and publications of varying impact.

Consequently, it can be challenging to predict a researcher’s future impact and the

influence of any particular publication on this impact, regardless of how impact is

measured.

Often a researcher’s total number of citations is used as a measure of impact,

while a researcher’s total number of publications is used as a measure of productiv-

ity. However, while these simple measures are intuitive and can be useful, they also

have significant limitations. For example, a solitary well-cited, impactful paper can

skew the total number of citations, potentially distorting its use as a measure of over-

all impact. Similarly, the total number of publications can be increased by a large

number of poorly cited papers, which may not be indicative of the actual produc-

tivity involved. Moreover, as citations demonstrate a heavy-tailed distribution, with

the vast majority of publications receiving few citations, these simple measures are

exceedingly difficult to estimate using traditional regression analysis [32, 171]. Thus,

determining how many citations a given researcher or a given paper will receive is

often ineffective in practice.

In light of these difficulties and limitations, we instead address two analogous

questions asked by many academic researchers: “How will my h-index evolve

over time, and which of my previously and newly published papers will
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contribute to my future h-index?”

These questions are based on the h-index. As described by J. E. Hirsch, by whom

the index was proposed: “A scientist has index h if h of his or her papers have at

least h citations each, and the other papers have no more than h citations each”

[90]. The h-index is thus a function of the number of publications (quantity) and

the number of citations per publication (quality). As a result of its simplicity and

predictive value, the h-index has become a de facto standard for measuring scientific

impact.

Present Work. To tackle the questions of how one’s h-index will evolve over

time and which publications will contribute to it, we formulate two scientific impact

prediction problems, as shown in Figure 6.1. Our first task is to predict authors’

future h-indices based on their current scientific impact, which has been explored

with data on a small sample of neuroscientists [2]. We then determine whether

a given paper will influence a particular author’s predicted future h-index, which

we formalize as our primary scientific impact prediction problem. Accordingly, our

second (primary) prediction problem is to determine whether a given previously or

newly published paper will, after a predefined timeframe, increase the future h-index

of its primary author (i.e., the paper’s first author or the author with the highest

h-index). The predicted future h-indices generated by the first task are used as

the future h-indices in our primary task. Thus, in our primary task, an author’s

future h-index represents the author’s expected h-index after the predefined period

of time, with the purpose of accounting for the change in the author’s h-index over

the prediction timeframe.

Contributions. This chapter discerns the impact of a given publication on the

primary author’s h-index. First, we investigate the factors that influence the devel-

opment of an author’s scientific impact, for which we generate a model to infer an

author’s future h-index. Second, by using the future h-index predicted by this model
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Figure 6.1. Illustrative example of scientific impact prediction. Before
time t, a scholar published m papers and had an h-index of h. Our

prediction problems are targeted at answering two questions: 1) What is
the scholar’s future h-index, h′, at time t+Δt? 2) Which of his/her papers,
both (a) those m papers previously published before t and (b) those n new

papers published at t, will contribute to h′?

as the target variable for predicting whether a paper will increase its primary author’s

h-index, we account for the dynamic change in the primary author’s h-index over the

course of prediction timeframe. In other words, in this work we aim to predict not

only on the newly published papers [45], but also on the previously published ones.

We also re-define the primary author of a publication as both the first author and

the author with highest h-index among the author list. To further add to the utility

of this work, we have also developed and deployed an online tool that allows users to

generate h-index predictions based on our findings.

Challenges. Factors such as the researcher’s current influence, the publication

topic, and the publication venue may, among many other factors, play a role in

determining the degree to which a publication contributes to the researcher’s future

impact. A resulting challenge is the interplay of such factors, which can confound

attempts to generate effective predictions. Considerations such as the variability of

the h-index according to the “academic age” of a researcher, the widely differing

citation conventions among different fields, and the co-authorship of researchers with
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differing h-indices can make it difficult to isolate the degree to which a given paper

will contribute to the measured impact of its authors. Further, effectively predicting

whether a publication will contribute to its authors’ measured future impact must

account for the change in impact over the prediction timeframe, which may follow

a trajectory and rate particular to each author. Our work focuses on addressing

and overcoming each of these issues to generate novel, effective scientific impact

predictions, as well as investigating precisely what role a variety of factors play in

these predictions.

Results. We demonstrate a high level of predictability for scientific impact as

measured by our two problems. Accordingly, we find strong performance for our first

task of predicting an author’s future h-index. Our results demonstrate that we can

predict an author’s h-index in five years with an R2 value of 0.9197, as shown in

Figure 6.2(a). This performance generally increases as the prediction timeframe is

shortened, with a prediction of ten years achieving an R2 of 0.7461. We also find

strong performance for our primary task of predicting whether a publication will con-

tribute to its primary author’s future h-index. Our results demonstrate that we can

predict whether in five years a previously (newly) published paper will contribute to

the future h-index of the author with highest h-index with an F1 score of 0.99 (0.77),

as shown in Figure 6.2(b), an improvement of +130% (+160%) over random guessing.

From Figure 6.2(c), we can observe that similar, strong performance is achieved when

considering the first author of a publication as its primary author. Predictive perfor-

mance for newly published papers generally increases as the prediction timeframe is

expanded. However, predictive performance for previously published papers achieves

consistently high F1 scores, suggesting their general predictability. Our results also

indicate that authors with low h-indices are easier to predict for than those with high

ones (see Figures 6.2(b) and 6.2(c), blue vs. red lines).

We also assess the influence of various factors on our predictive results. For
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Figure 6.2. Predictability of scientific impact. x-axis: year of data used
to predict to 2012. y-axis: performance. (a) Performance for predicting an

author’s h-index as a regression task (R2 value). (b) Performance for
predicting whether a given paper will increase the h-index of its primary
author (as defined by the author with highest h-index among its author
list) as a classification task (F1 score). (c) Performance for predicting

whether a paper will increase the first author’s h-index.

our first problem, predicting an author’s future h-index, we find that the author’s

current h-index is the most important, followed by the number of publications and

co-authors. For our primary problem, predicting whether a paper will contribute to

its primary author’s h-index, we find that topical authority is the most telling factor

for newly published papers, while the existing citation information is the most telling

for previously published ones, followed by the authors’ influence and the publication
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venue. We also find that the venue in which the paper is published and the author’s

collaborations are moderately significant factors over longer prediction periods, but

become inconsequential for shorter ones. Finally, we are surprised to find that the

diversity and popularity of the publication topic have no discernible correlation to

the prediction target for both previously and newly published papers. Overall, our

findings unveil the predictability of scientific impact and provide researchers with

concrete suggestions for expanding their scientific influence and, ultimately, for more

effectively “standing on the shoulders of giants.”

A caveat of this work is that by targeting the h-index, our findings may result in

unintended side effects by a principle referred to as Goodhart’s Law, which essentially

warns that “when a measure becomes a target, it ceases to be a good measure”

[195]. Yet, we strongly believe that by deepening the understanding of scientific

impact measures, the findings presented in this work can actually help to strengthen

the foundations upon which these measures are based, ultimately facilitating their

improved use. In no way should our research be construed as advocating the use of

the h-index or any other measure as a deciding factor in the determination of one’s

research pursuits.

6.3 AMiner Academic Data

In this paper, we use the real-world academic dataset from ArnetMiner [203],

which is the world-leading free online service for academic social network analysis

and mining. The dataset contains 1,712,433 authors with 2,092,356 papers from

computer science venues held until 2012. Each paper includes information on the title,

abstract, authorship, references, and publication venue and year. The dataset also

captures 4,258,615 collaboration (co-authorship) relationships and 8,024,869 citation

relationships.

We briefly explore and report the data characteristics of the author-paper-citation
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Figure 6.3. Distributions of the citation counts of papers and the h-indices
of authors. In this dataset, 7.41% (154,985) of the papers obtain more
than 50 citations and 0.0093% (159) of the researchers have h-indices

greater than 60.

data used in this work. Figure 6.3 shows the distributions of the number of citations

for each paper and the h-index of each author. In our dataset, both metrics follow

heavy-tailed distributions (i.e., distributions with a “tail” that is “heavier” than that

of an exponential). Moreover, only 7.41% (154,985) of the papers have more than 50

citations, while 0.0093% (159) of the researchers have an h-index over 60.

6.4 Problem Definition

Traditionally, the task of scientific impact prediction is formulated as a regression

problem for predicting citation counts [234]. However the intrinsically heavy-tailed

distribution of citation counts, demonstrated in Figure 6.3(a), make such predictions

necessarily skewed [32, 45]. This problem motivates a search for alternate approaches

that are more resilient to a skew in citation counts. Inspired by the work of [32],

which considers the problem of Facebook cascade growth prediction, we formulate

the following task: Given a paper at timestamp t, we predict whether that paper will

increase its authors’ h-indices by the future timestamp t + ∆t.
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Figure 6.4. h-index trends. (a) The ratio between one’s h-index (≥ 20)
and her/his number of papers stabilizes at 0.3. (b) The correspondence

between one’s h-index in 2002 (red line) and 2007 (blue line) and his/her
predicted h-index in 2012.

Realistically, however, the authors’ h-indices are not static; they may increase

during the duration ∆t. Figure 6.4(b) shows the comparisons between scholars’ h-

indices in 2002 or 2007 and their corresponding future h-indices in 2012. In this

sense, to solve the scientific impact prediction task above, we need to first infer the

future h-indices of the paper’s authors. Thus we formalize two prediction problems,

namely future h-index prediction and scientific impact prediction.

Problem 3 (Future h-index Prediction) Given the publication corpus C before

timestamp t and each author’s h-index at t, the task is to predict the authors’ future

h-indices at timestamp t + ∆t.

Definition 5 (Primary Author) Given a paper d ∈ C, the primary author of d

is defined in two ways: given paper d’s author list, take either the author with the

highest h-index or the first author on the list.

Problem 4 (Scientific Impact Prediction) Given the publication corpus C be-

fore timestamp t, each paper d ∈ C published by (at or before) t, and the primary
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author’s predicted future h-index, the problem is to predict whether d’s number of

citations will reach the primary author’s future h-index after a given time period ∆t.

The major novelty of this approach lies in the formulation of the second problem,

i.e., scientific impact prediction, while the first problem serves to facilitate it. As for-

mulated, the second problem is composed of two tasks. The first task is to predict for

papers published before the current timestamp t. For these papers, we have citation

counts that have accumulated until t. The second task is to predict for those pa-

pers published at t without prior information about their citations. Importantly, the

problem addresses the above-noted issues with traditional citation count prediction

by using a local threshold—the primary author’s h-index—for each paper’s future

citation count. Figure 6.4(a) shows that the ratio between one’s h-index (≥ 20) and

his or her number of papers stabilizes at about 30%, allowing us to circumvent the

inherent skew of citation counts.

Our proposed problem of scientific impact prediction is fundamentally different

from the traditional problem of predicting citation counts [234]. Whereas citation

count prediction typically employs regression to predict scientific impact, our problem

is to instead predict each paper’s future impact conditioned on its authors. Though

inspired by it, our problem is also entirely different from the cascade growth prediction

problem [32], which requires the observation of the first k reshares (here, citations)

to predict future reshare counts. The chief advantage of our formulation is its general

applicability to a variety of real-world tasks, including author h-index and popularity

prediction [181], expert finding and search [239], and credit allocation [107, 182].

6.5 Scientific Impact Factors

To quantify scientific impact, it is natural to use the number of citations obtained

by each paper and its authors. Recall that given a paper d, our objective is to predict

whether the number of citations cd it obtains within a given time period ∆t will be
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Figure 6.5. h-index factor correlations. (a) (c) The numbers of papers
and co-authors are highly correlated with a scholar’s h-index. (b) The

average number of citations for each author is larger than her/his h-index.
(d) The rate at which the h-index increases itself increases as the length of
time spent in academia becomes longer (i.e., the rich get richer). Shaded

area indicates error bars observed at a 95% confidence interval.

larger than its primary author’s future h-index. In other words, we aim to model the

co-evolution of the primary author’s h-index and paper d’s citation count over the

period ∆t.
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TABLE 6.1

H-INDEX FACTOR DEFINITIONS

Factor Description cc2002 cc2007

h-index Current h-index 0.7838 0.9335

num-papers #papers published 0.6518 0.7375

num-citations Average #citations per paper 0.1486 0.2289

num-co #unique co-authors 0.5784 0.5992

num-years #years since first paper -0.0855 0.1089

6.5.1 Factors That Drive One’s h-index to Increase

We first examine the factors that potentially affect the development of scientific

scholars’ h-indices. Acuna et al. [2] and Redner et al. [173] have examined the factors

that are indicative of the future h-indices of small groups of physicists and neuro-

scientists, respectively. As our work focuses on the computer science domain, Table

6.1 provides brief descriptions for five simple factors that we find to have effects on

the evolution of computer scientists’ h-indices, as well as the correlation coefficients

between these factors in 2002 (∆t=10 years) / 2007 (∆t=5 years) and the schol-

ars’ future h-indices in 2012. cc2002 and cc2007 represent the respective correlation

coefficients.

The correlation coefficients provide several observations. First, we can observe

that researchers’ future h-indices are highly correlated with their current h-indices,

followed by their number of publications and co-authors. Second, we notice a po-

tentially counterintuitive phenomenon, wherein the number of citations and years

publishing work have surprisingly limited correlations with future h-indices vis-à-vis

other factors. Finally, within a shorter timeframe (cc2002 vs. cc2007), historical and

157



future h-indices exhibit high correlations.

Figure 6.5 presents the basic characteristics of scientific impact in terms of h-

index, including counts for an author’s number of papers, citations, co-authors, and

years conducting research. Positive linear relationships are clearly observed between

the h-index and the number of papers and co-authors in Figures 6.5(a) and 6.5(c),

respectively. Also, Figure 6.5(b) shows that the average number of citations for each

author is larger than his or her h-index. Finally, in Figure 6.5(d), we examine the

interplay between authors’ h-indices and the length of time they spend in academia

(the date difference between one’s first and last publications). We observe that the in-

crease of h-index is relatively slow upon initially entering academia. As one’s h-index

increases, the accumulations of influence, resources, connections, and publications

further drive one’s h-index upward, and scientific impact expands at an increasingly

rapid rate. In other words, the aphorism that “the rich get richer” is readily observed

in academia, whereby the influence of individuals who have already accumulated a

great deal of influence increases at a disproportionally quick rate. All characteristics

are observed at a 95% confidence interval.

6.5.2 Factors That Drive Papers to Increase h-index

We further investigate the factors that drive a paper’s citation count to exceed

its primary author’s h-index, including the paper’s author(s), content, publication

venue, and references, as well as social and temporal effects related to its author(s).

Table 6.2 lists the six diverse groups of factors investigated in this work, and Table

6.3 reports the correlation coefficients between the factors of papers published in 2002

(∆t = 10) / 2007 (∆t = 5) and whether their citation counts are greater than or

equal to the primary authors’ h-indices in 2012. Figure 6.6 shows the response curve

of the most important factor for each group (as evaluated by correlation coefficients

in Table 6.3) when considering the max-h-index author as the primary author.
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TABLE 6.2

FACTOR DEFINITIONS

Category Factor Description

Author

A-first-max The first author’s h-index.

A-ave-max The average h-index of all authors.

A-sum-max The sum of h-indices of all authors.

A-first-ratio The ratio between max-h-index and #papers attributed to the first author.

A-max-ratio The ratio between max-h-index and #papers attributed to the primary author.

A-num-authors The number of authors of the given paper.

Content

C-popularity The #average-citations over different topics (see Eq. 6.1).

C-novelty The topic novelty of this paper (see Eq. 6.2).

C-diversity The topic diversity of this paper (see Eq. 6.3).

C-authority-first The consistence between the first author’s authority and this paper (see Eq. 6.4).

C-authority-max The consistence between the primary author’s authority and this paper.

C-authority-ave The average consistence between each author’s authority and this paper.

159



TABLE 6.2

Continued

Category Factor Description

Venue
V-h-index The venue’s h-index.

V-citation The #average-citations of papers published in this venue.

Social

S-degree The number of co-authors of the paper’s authors.

S-pagerank The PageRank values of the paper’s authors in the weighted collaboration network.

S-h-coauthor The average h-index of co-authors of the paper’s authors.

S-h-weight The weighted average h-index of co-authors of the paper’s authors.

Reference
R-h-index The references’ h-index.

R-citation The #average-citations.

Temporal

T-ave-h The average ∆h-indices of the authors between now and three years ago.

T-max-h The maximum ∆h-index between now and three years ago.

T-h-first The ∆h-index of the first author between now and three years ago.

T-h-max The ∆h-index of the max-h-index author between now and three years ago.
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Figure 6.6. Factor response curves with ∆t = 5 or 10 for Pmax
new . x-axis:

factor value; y-axis: probability that a paper published at time t will
increase its primary author’s h-index by 2012. All response probabilities

are observed at a 95% confidence interval.
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TABLE 6.3

FACTOR CORRELATIONS

Category Factor
Pmax
new P first

new

cc2002 cc2007 cc2002 cc2007

Author

A-first-max 0.0309 0.0728 0.1102 0.1998

A-ave-max 0.0435 0.0999 0.0670 0.0264

A-sum-max 0.1589 0.1585 0.1801 0.1915

A-first-ratio 0.0161 -0.0365 0.2904 0.3232

A-max-ratio 0.2866 0.2423 0.2601 0.2285

A-num-authors 0.0878 0.0617 0.1359 0.0668

Content

C-popularity 0.2085 0.0741 0.2590 0.0628

C-novelty 0.1192 0.0807 0.1262 0.0763

C-diversity 0.1852 0.0712 0.2498 0.0716

C-authority-first 0.3537 0.4346 0.3408 0.3490

C-authority-max 0.3265 0.3874 0.3420 0.3667

C-authority-ave 0.3611 0.4359 0.3623 0.3865

Venue
V-h-index 0.2557 0.2940 0.2400 0.2351

V-citation 0.3357 0.3506 0.3058 0.3194

Social

S-degree 0.0314 -0.0393 0.0340 0.0454

S-pagerank -0.0341 -0.0782 0.0500 0.1317

S-h-coauthor 0.0750 0.0976 0.0148 0.0206

S-h-weight 0.0639 0.0861 0.0006 0.0166

Reference
R-h-index 0.1405 0.1562 0.1204 0.1103

R-citation 0.0858 0.0420 0.0635 0.0150
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TABLE 6.3

Continued

Category Factor
Pmax
new P first

new

cc2002 cc2007 cc2002 cc2007

Temporal

T-ave-h 0.2528 0.2616 0.1740 0.1819

T-max-h 0.2539 0.2027 0.2426 0.2032

T-h-first 0.2109 0.2188 0.1737 0.0907

T-h-max 0.2117 0.1504 0.2012 0.1603

Author Factors. The prediction task for each paper naturally depends on the

authors themselves, including both the primary author and his or her co-authors.

Prior work has been devoted to examining the interplay between scientific impact

(number of citations) and the average values of authors’ attributes [28, 234]. Given

our problem formulation, in addition to these factors, for each paper we investigate

the attributes of the primary author (e.g., the ratio of the author’s previous papers

that contribute to his/her h-index). Additionally, as the first author of a publication

usually leads the collaboration and may have considerable influence on its scientific

impact, we consider the probability that the number of citations obtained by each of

the first author’s previous publications is greater than the primary author’s h-index.

Of course, as a paper is the sum of all authors’ contributions, the combined impact

of all co-authors may influence a paper’s quality and popularity. Thus the sum of

all authors’ h-indices is used to simulate their overall impact. Due to self-citation

behavior, the author’s productivity (i.e., the number of her/his previous publications)

also has a positive effect on the paper’s future citation counts [16].
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Content Factors. Aside from the attributes of its authors, another intuitive factor

affecting a paper’s success is its content. Topic modeling is a widely used method for

extracting and mining the content of literature and can be used to extract “topics”

that occur in a collection of documents. One of the most popular topic modeling

methods is known as Latent Dirichlet Allocation (LDA), a generative probabilistic

approach that views each document as a mixture of various topics [19]. Similar to

previous work on modeling citation counts [234], we run a 100-topic LDA model on

the title and abstract of the corpus C published before time t and the target papers

published at time t, which returns the probability distribution p(z|d) over topics

z ∈ Z assigned for each paper d. We denote a target paper d at time t as dt, and we

define several features based on each paper’s topic distribution, including popularity,

novelty, diversity, and authority. We provide details on these features next.

First, we consider that as popular topics tend to attract more attention and

resources than relatively unpopular ones, it is relatively easy for papers related to

such topics to accrue citations. To capture this effect, we quantify the popularity of

each topic z across the overall corpus by popularity(z) =
∑

d∈C p(z|d) × cd, where

p(z|d) is the probability that paper d distributes on topic z and cd is the number of

citations d collects until the timestamp t. The popularity of a target paper dt (paper

d at time t) is then defined as:

C-popularity(dt) =
∑
z∈Z

popularity(z)× p(z|dt). (6.1)

Second, a paper’s novelty is an essential factor when assessing its contribution

to the scientific community. Previous work assumes that the novelty of an article

can be determined by measuring the difference between its content and that of its

references [234]. We utilize the Kullback-Leibler divergence [113] to capture the sum

of the difference between dt’s topic distribution and the topic distribution of each of

164



its references. Specifically, we define the novelty of paper dt as

C-novelty(dt) =

∑
dr∈RKL(p(Z|dt), p(Z|dr))

|R|
, (6.2)

where KL(p(Z|dt), p(Z|dr)) =
∑

z∈Z log p(z|dt)
p(z|dr)p(z|dt) and R is the set of dt’s refer-

ences.

Third, the topic diversity of a paper, defined as the breadth of its topic distri-

bution, is able to distinguish between different types of papers, such as surveys and

technical work. We follow the definition of diversity in [234] as calculated by Shannon

entropy:

C-diversity(dt) =
∑
z∈Z
−p(z|dt) log p(z|dt). (6.3)

Fourth, Kleinberg has pointed out that in a hyperlinked web environment, a

“good” authority represents a page that is linked to by many hubs [106]. Similarly,

academic authority can be designated by being highly cited by many other researchers

in a specific domain of expertise. To measure the authority of researcher a on topic

z, we propose the following definition: authority(a, z) =
∑

d∈Ca p(z|d)× cd, where Ca

is the researcher a’s previous publications. Therefore, given the target paper dt, the

author’s authority is distributed over the topic distribution of dt. Formally,

C-authority(dt, a) =
∑
z∈Z

p(z|dt)× authority(a, z). (6.4)

This definition of authority follows from the intuition that a correspondence be-

tween a paper’s topic distribution and its authors’ expertise can help ensure its qual-

ity.

Venue Factors. Top venues attract high-quality submissions, and high-quality
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submissions elevate the reputation of their respective venues. Google Scholar metrics

show that different venues have large differences in their h5 -indices (the h-index

computed only from articles published within the last 5 complete years), a measure

of venue impact. For example, in the field of data mining and analysis, the top

three venues are ACM SIGKDD, IEEE TKDE, and ACM WSDM, with h5 -indices

of 69, 57, and 54, respectively. By contrast, most other venues in this field typically

have h5 -indices between 10 and 20. In light of these differences, we engage in the

investigation of how different venues influence the probability that a paper contributes

to its author’s h-index. Two heuristic metrics are examined, namely (1) the average

number of citations each paper in the venue collects and (2) the ratio between the

number of papers in the venue with at least max-h-index citations to the venue’s total

number of papers. Every researcher aims to publish scientific results in well-respected

journals and conferences, so our intuition is that top venues help researchers spread

their scientific impact and, more specifically, to increase the citation counts of their

papers, which further offers a potential to increase their h-indices.

Social Factors. Previous studies have shown that researchers display a tendency to

cite their co-authors’ work [16]. As shown in Figure 6.5(c), our investigations reveal

that a researcher’s h-index is also positively correlated with his or her total number

of collaborators. To explore this trend, we extract a weighted collaboration network

from the dataset, where each author is denoted as a node and each link between

two nodes is connected if the researchers have collaborated with each other. The

weight of each link is defined as the frequency of collaboration. We then extract four

features for each node (author) from the collaboration network, including the number

of co-authors (degree), the PageRank score, the average h-index of co-authors, and

the weighted average h-index of co-authors. For a given paper, the highest values

among its authors for these four metrics are used as social factors.

Reference Factors. The scientific impact of a scholarly work is often quantified
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TABLE 6.4

EXISTING FACTOR DEFINITIONS AND CORRELATIONS

Factor Description
Pmax
new P first

new

cc2002 cc2007 cc2002 cc2007

E-numc #citations 0.1656 0.2352 0.1509 0.2029

E-numc-ave #ave-c per year 0.1913 0.3203 0.1579 0.2600

E-num-years #publication-years 0.0140 0.0856 0.0103 0.0415

by its respective citation count. The more times a publication is cited by others, the

greater its assumed impact. Conversely, as most scientific research is undertaken by

“standing on the shoulder of giants,” we ask whether highly cited papers actually

tend to acknowledge the previous “giants” upon whom they stand. Two intuitive

factors are used to evaluate this question, namely (1) the ratio of a paper’s references

that have at least max-h-index citations to the paper’s total number of references

and (2) the average number of citations accumulated by the paper’s references.

Temporal Factors. Just as fast-rising phenomena typically attract the attention

of crowds more easily, a “rising star” in academia can attract wide publicity. Previous

work has found that temporal information can be a powerful factor in modeling sci-

entific impact [16, 234], so it is straightforward to assume that the speed at which an

author’s h-index grows should affect the rate at which the author’s papers contribute

to his or her h-index. To capture this effect, we examine the increase of authors’

h-indices within the past three years. Specifically, we consider four temporal factors,

including the h-index changes of the first author, the max-h-index author, and the

average change and maximum change among all authors. The specific definitions are

shown in Table 6.2.
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6.5.3 Existing Factors for Previous Papers

Besides the above-examined factors, which generally drive papers to increase au-

thors’ h-indices, we discuss several factors that are extracted from the existing citation

information for papers published before time t. For each paper, we consider three

intuitive factors: (1) the total number of citations the paper has accrued until t; (2)

the average number of citations the paper has accrued per year until t; and (3) the

length of time between the paper’s publication date and t.

The correlation of each factor with the target variable is provided in Table 6.4.

We observe that, from among these factors, the average number of citations per year

that each paper has accrued before t is most highly correlated with the probability

that the paper will increase its primary author’s future h-index at time t + ∆t.

6.5.4 Summary

Drawn from the correlation analysis above, we provide the following intuitions

relating to academia:

First, a research scholar’s future h-index is highly correlated with his or her current

impact—namely, the researcher’s h-index—rather than the number of citations each

of his or her publications collect or the length of his or her academic career.

Second, a scientific researcher’s authority on a topic is the most decisive factor

in facilitating an increase in his or her h-index. This coincides with the fact that

the society fellows or lifetime honors are typically conferred for contributions to a

particular topic or domain. However, the topic diversity of a publication is a relatively

non-effective factor in growing its scientific impact, as measured by its probability to

increase the h-indices of its authors.

Third, the reputation of the venue in which a given paper is published is another

crucial factor in determining the probability that it will contribute to its authors’ h-

indices. Top venues distinguish one’s work as outstanding and expand one’s scientific
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impact; gradually, one’s impact can further help to increase the venue’s prestige.

Finally, while people in social society often follow vogue trends, publishing on an

academically “hot” but unfamiliar topic is unlikely to further one’s scientific impact,

at least as measured by one’s h-index.

6.6 Scientific Impact Prediction

In this section, we demonstrate the predictability of scientific impact in two parts.

First, we predict the future h-indices of scientific scholars. Second, given the esti-

mated future h-indices, we determine whether a previously (Pold) or newly (Pnew)

published paper will contribute to its primary author’s h-index within a given time-

frame.

6.6.1 Experimental Setup

Our primary task is to predict whether a paper published by (at or before) times-

tamp t will contribute to the future h-index of its primary author within a given time

period ∆t. To accomplish this, we need to first estimate the author’s h-index at t

+ ∆t based on data observed at time t. For example, by setting t = 2007, ∆t = 5

years, and the minimum h-index of the primary author to 10, we collect one set of

papers (Pnew) published in 2007 and another set of papers published before 2007

(Pold). We then extract the features from the corpus observed at 2007 and observe

whether the number of citations for each paper in these two sets is larger than or

equal to the future h-index of its primary author in 2012 (the last year represented

in our dataset).
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Figure 6.7. Performance for predicting future h-indices.

6.6.2 Predicting Future h-indices

Methods. Similar to the previous work of [2], wherein Acuna et al. propose a

method to infer the future h-indices of neuroscientists, our h-index prediction problem

is formulated as a regression task. For this task, we use linear regression, primarily

due to its effectiveness, simplicity, and interpretability. The features used here contain

the factors detailed in Table 6.1. To quantitatively evaluate the model predictions,

we report the performance in terms of the coefficient of determination (R2) [133] and

the mean absolute error (MAE).

Prediction Results. We present the extent to which research scholars’ future

h-indices can be inferred from their previous publication records. Figure 6.7 reports

the predictive performance in terms of R2 and MAE. On the one hand, the rising lines

in Figure 6.7(a) and the descending lines in Figure 6.7(b) as t increases both imply

that our prediction task is easier when given a shorter timeframe. That is, future

h-indices are more predictable when the future is close to t. Our observations agree

with the intuition that the variability in the development of researchers’ h-indices

increases with a large prediction timeframe. On the other hand, the figure generally
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(b) Prediction from 2007 to 2012

Figure 6.8. h-indices in data vs. predicted h-indices.

suggests that our prediction task is more difficult for authors with high h-indices.

Intuitively, as an author’s h-index increases, the variability in the development of his

or her scientific impact also increases, which results in an increasingly challenging

prediction task.

Figure 6.8 illustrates the concordance between the future h-indices predicted by

our model and the actual h-indices according to the provided data. As the prediction

timeframe can be varied, Figure 6.8(a) reports results over a ten-year timeframe,

while Figure 6.8(b) reports results over a five-year timeframe. For both plots, optimal

performance is denoted by the dashed y = x line, which represents perfect agreement

between the predictions and data. From the plots we observe that higher h-indices

correspond to higher variability (error bars) and increasing deviation from optimal

performance, suggesting that higher future h-indices are more difficult to predict.

However, Figure 6.8(a) also demonstrates higher levels of deviation and variability

than Figure 6.8(b), indicating that accurately predicting future h-indices is more

difficult over longer timeframes.

171



6.6.3 Predicting Whether Papers Increase h-indices

Methods. Our problem of predicting whether a paper increases its primary author’s

future h-index is formulated as a classification task. For this task, we employ a series

of standard classification models, including logistic regression (LRC), support vector

machine (SVM), näıve Bayes (NB), radial basis function network (RBF), bagged

decision trees (BAG), and random forest (RF). Generally, we report the prediction

results of each method to demonstrate the predictability of scientific impact, though

we only use logistic regression to analyze factor contributions and parameter settings.

Recall that for this task, we have defined two sets of papers, Pnew and Pold, and we

generate predictions for both. When defining the primary author as either the max-h-

index author or the first author, we further extract two sets of papers from both Pnew

and Pold, respectively, and have Pmax
new , P first

new , Pmax
old , and P first

old . For each set of papers,

we use half of the instances (papers) in the set for model training and the remaining

half for model validation. When predicting for Pnew, we use the six groups of 24

total factors described in Table 6.2. When predicting for Pold, these 24 factors are

used along with the three additional factors described in Table 6.4. To quantitatively

evaluate the predictability of the problem, we repeat the prediction experiments ten

times and report the average performance in terms of precision, recall, F1 score, area

under the receiver operating characteristic (AUC), and accuracy. Furthermore, as

our problem can be viewed as a ranking task (i.e., rank all of a scholar’s papers in

the reverse order of probability that they will increase her/his h-index), the precision

at the top 3 results (Pre@3) and mean average precision (MAP) are also used to

evaluate performance.
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TABLE 6.5

PREDICTIVE PERFORMANCE FOR Pmax
new

Method Precision Recall F1 AUC Accuracy Pre@3 MAP

Pmax
new

Random 0.2107 0.5000 0.2965 0.5000 0.5000 0.5899 0.4132

LRC 0.8233 (0.0049) 0.5929 (0.0062) 0.6894 (0.0038) 0.9299 (0.0017) 0.8873 (0.0010) 0.8928 0.9440

SVM 0.8377 (0.0050) 0.5806 (0.0044) 0.6858 (0.0034) 0.7753 (0.0021) 0.8879 (0.0011) 0.8033 0.8655

NB 0.6483 (0.0113) 0.5371 (0.0151) 0.5873 (0.0072) 0.8497 (0.0043) 0.8409 (0.0024) 0.8201 0.8759

RBF 0.6679 (0.0109) 0.5573 (0.0124) 0.6075 (0.0081) 0.8403 (0.0078) 0.8482 (0.0029) 0.7897 0.8694

BAG 0.7992 (0.0045) 0.7455 (0.0111) 0.7713 (0.0043) 0.9548 (0.0008) 0.9068 (0.0009) 0.8919 0.9509

RF 0.7647 (0.0058) 0.7630 (0.0090) 0.7638 (0.0043) 0.9373 (0.0015) 0.9005 (0.0016) 0.8734 0.9376
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TABLE 6.6

PREDICTIVE PERFORMANCE FOR Pfirst
new

Method Precision Recall F1 AUC Accuracy Pre@3 MAP

P first
new

Random 0.2660 0.5000 0.3472 0.5000 0.5000 0.8068 0.6728

LRC 0.8202 (0.0106) 0.6129 (0.0131) 0.7014 (0.0077) 0.9112 (0.0028) 0.8611 (0.0027) 0.9200 0.9647

SVM 0.7866 (0.0207) 0.4893 (0.0134) 0.6031 (0.0114) 0.7205 (0.0065) 0.8059 (0.0048) 0.8666 0.9094

NB 0.6776 (0.0149) 0.5176 (0.0234) 0.5865 (0.0143) 0.8316 (0.0064) 0.8130 (0.0046) 0.8733 0.9250

RBF 0.6895 (0.0167) 0.5418 (0.0252) 0.6064 (0.0163) 0.8200 (0.0059) 0.8661 (0.0057) 0.8866 0.9277

BAG 0.7815 (0.0103) 0.6901 (0.0092) 0.7329 (0.0068) 0.9216 (0.0023) 0.8661 (0.0035) 0.9000 0.9609

RF 0.7322 (0.0139) 0.7136 (0.0131) 0.7227 (0.0111) 0.9033 (0.0034) 0.8542 (0.0060) 0.8800 0.9518
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TABLE 6.7

PREDICTIVE PERFORMANCE FOR Pmax
old

Method Precision Recall F1 AUC Accuracy Pre@3 MAP

Pmax
old

Random 0.3776 0.5000 0.4303 0.5000 0.5000 0.5070 0.3186

LRC 0.9840 (0.0006) 0.9829 (0.0008) 0.9834 (0.0004) 0.9995 (0.0000) 0.9874 (0.0003) 0.9992 0.9992

SVM 0.9835 (0.0009) 0.9806 (0.0014) 0.9820 (0.0008) 0.9853 (0.0007) 0.9864 (0.0005) 0.9825 0.9844

NB 0.9316 (0.0024) 0.8290 (0.0040) 0.8773 (0.0022) 0.9763 (0.0008) 0.9124 (0.0014) 0.9620 0.9601

RBF 0.7860 (0.1066) 0.6965 (0.1440) 0.7211 (0.0533) 0.8768 (0.0060) 0.8019 (0.0181) 0.8933 0.8902

BAG 0.9939 (0.0005) 0.9898 (0.0003) 0.9918 (0.0003) 0.9998 (0.0000) 0.9938 (0.0002) 0.9998 0.9997

RF 0.9816 (0.0020) 0.9880 (0.0003) 0.9848 (0.0011) 0.9992 (0.0001) 0.9884 (0.0008) 0.9984 0.9984
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TABLE 6.8

PREDICTIVE PERFORMANCE FOR Pfirst
old

Method Precision Recall F1 AUC Accuracy Pre@3 MAP

P first
old

Random 0.4753 0.5000 0.4873 0.5000 0.5000 0.6424 0.4524

LRC 0.9818 (0.0011) 0.9803 (0.0007) 0.9810 (0.0004) 0.9988 (0.0000) 0.9819 (0.0003) 0.9990 0.9994

SVM 0.9838 (0.0056) 0.9725 (0.0085) 0.9781 (0.0024) 0.9790 (0.0024) 0.9792 (0.0021) 0.9827 0.9865

NB 0.9588 (0.0030) 0.7963 (0.0051) 0.8700 (0.0024) 0.9713 (0.0009) 0.8868 (0.0017) 0.9740 0.9814

RBF 0.8956 (0.0244) 0.4829 (0.0505) 0.6259 (0.0428) 0.8288 (0.0226) 0.7271 (0.0218) 0.8810 0.8932

BAG 0.9873 (0.0010) 0.9842 (0.0009) 0.9858 (0.0004) 0.9993 (0.0001) 0.9865 (0.0003) 0.9990 0.9993

RF 0.9762 (0.0024) 0.9828 (0.0009) 0.9795 (0.0013) 0.9982 (0.0002) 0.9804 (0.0012) 0.9975 0.9985
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Prediction Results for Pnew. The predictability of whether a paper published

at t = 2007 will contribute to its primary author’s future h-index within ∆t = 5

years is presented in Tables 6.5 and 6.6. The prediction is applied to the papers

whose primary author had an h-index in 2007 of at least 10. The resulting set when

considering the max-h-index author as the primary author, Pmax
new , contains 29,254

papers, of which 21.07% successfully contributed to their primary author’s future

h-index by 2012. When the first author serves the primary author, the resulting set

P first
new covers 9,231 papers, of which 26.60% increased the first author’s future h-index

by 2012.

Overall, when predicting Pmax
new , random guessing achieves an F1 score of 0.2965

and an accuracy of 0.5000. However, our methodology achieves a predictive power

that significantly outperforms random guessing, demonstrating an F1 score ranging

from 0.5873 to 0.7713 (+98% to +160% increase) and an accuracy ranging from

0.7753 to 0.9548 (+66% to +91% increase). The performance is similarly promising

when measured by precision, recall, and AUC. Furthermore, by ranking all of a

scholar’s publications in the reverse order of probability that they increase his or

her h-index, logistic regression can achieve a Pre@3 of 0.8928 and a MAP of 0.9440.

Similarly, the experimental performance when predicting for P first
new , where the first

author is considered the primary author, significantly outperforms random guessing

and demonstrates a comparable predictability with the results for Pmax
new .

Prediction Results for Pold. The predictability of whether a paper published

before t = 2007 will contribute to its primary author’s future h-index (≥ 10) within

∆t = 5 years is presented in Tables 6.7 and 6.8. The resulting set when consider-

ing the max-h-index author (the first author) as the primary author, Pmax
old (P first

old ),

contains 161,348 (85,704) papers, of which 37.76% (47.53%) successfully contributed

to their primary authors’ future h-indices by 2012. Random guessing achieves an

F1 score of 0.4303 (0.4873), an AUC of 0.5000 (0.5000), and a Pre@3 of 0.5070
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(0.6424). Generally, the algorithms can achieve at least twice the performance of

random guessing, as measured by all of the evaluation metrics employed. The results

demonstrate strong predictability for this scientific impact prediction task, with per-

formance scores ranging from 0.98–0.99 as measured by precision, recall, F1 score,

AUC, accuracy, Pre@3, and MAP.

As the selected algorithms achieve similarly effective results, we use logistic regres-

sion to examine the remaining experiments—primarily owing to its interpretability.

6.6.4 Predictability of Different Papers

Our experimental results provide evidence for the predictability of whether a

newly or previously published paper will contribute to the h-index of its primary

author within five years. Yet, two intuitive questions naturally arise concerning this

predictability: First, is a primary author with a high or low h-index more predictable?

Second, is a paper more predictable given a long or short prediction timeframe?

To answer these questions, we investigate the predictability of papers conditioned

on the primary author’s h-index and the length of the given prediction timeframe

(∆t). Figure 6.9 shows the predictive performance given different constraints for four

sets of papers, conditioned on the publication date and primary author definition—

Pmax
new , Pmax

old , P first
new , and P first

old .

First, from Figures 6.9(a) and 6.9(c), we find that predicting for papers with

low-h-index primary authors is a relatively easy task as measured by F1 vis-à-vis

predicting for those with high h-indices.

Intuitively, the prediction task becomes increasingly non-trivial because of the

increasing difficulty for any particular paper to reach the defined local threshold (i.e.,

the primary author’s h-index). Additionally, we observe that performance generally

decreases as t increases, implying that our prediction task is easier when given a

longer timeframe ∆t = 2012−t. Intuitively, papers can accrue more citations as time
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Figure 6.9. Predictive performance for different papers.

goes on, during which time the authors’ influence may increase, which may further

compound the rate at which citations accrue. In summary, determining which newly

published papers will increase one’s h-index is more predictable when conducted over

a relatively long timeframe for those who have relatively low h-indices.

Note that from Figures 6.9(b) and 6.9(d), we can see that when predicting for

previously published papers, both observations above are not significant. This is due

to the relatively strong predictability of those papers.
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Figure 6.10. Factor contribution analysis. Logistic regression model trained with only or without the denoted factors. F: full
feature set; A: Author factors; C: Content factors; V: Venue factors; S: Social factors; R: Reference factors; T: Temporal
factors; E: Existing factors for previously published papers. The left and right sides of the figure illustrate the effects of

omitting (the “without” case) and only including (the “with only” case) the indicated group of factors for model training,
respectively.
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TABLE 6.9

INFORMATION GAIN RATIO (IGR) OF EACH FACTOR

Factor
Pmax
new Pmax

old

IGR2002 (R) IGR2007 (R) IGR2002 (R) IGR2007 (R)

A-first-max 0.0193 (15) 0.0255 (10) 0.0168 (10) 0.0206 (10)

A-ave-max 0.0126 (19) 0.0200 (11) 0.0153 (11) 0.0207 (9)

A-sum-max 0.0229 (13) 0.0193 (12) 0.0170 (9) 0.0134 (11)

A-first-ratio 0.0133 (17) 0.0111 (15) 0.0138 (12) 0.0114 (12)

A-max-ratio 0.0631 (5) 0.0409 (7) 0.0665 (7) 0.0656 (7)

A-num-authors 0.0079 (20) 0.0044 (23) 0.0025 (21) 0.0007 (26)

C-popularity 0.0315 (11) 0.0053 (20) 0.0024 (23) 0.0035 (23)

C-diversity 0.0258 (12) 0.0047 (22) 0.0018 (26) 0.0031 (25)

C-novelty 0.0127 (18) 0.0062 (19) 0.0018 (25) 0.0000 (27)

C-auth.-first 0.3988 (1) 0.3407 (2) 0.0858 (3) 0.1269 (4)

C-auth.-max 0.3006 (3) 0.2651 (3) 0.0678 (6) 0.1081 (5)

C-auth.-ave 0.3781 (2) 0.3462 (1) 0.0854 (4) 0.1327 (3)

V-h-index 0.0619 (6) 0.0714 (5) 0.0494 (8) 0.0586 (8)

V-citation 0.1233 (4) 0.1090 (4) 0.0845 (5) 0.1009 (6)

S-degree 0.0000 (24) 0.0029 (24) 0.0018 (24) 0.0071 (19)

S-pagerank 0.0000 (23) 0.0052 (21) 0.0025 (22) 0.0089 (16)

S-h-coauthor 0.0065 (21) 0.0091 (17) 0.0077 (21) 0.0076 (17)

S-h-weight 0.0045 (22) 0.0078 (18) 0.0051 (20) 0.0056 (21)
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TABLE 6.9

Continued

Factor
Pmax
new Pmax

old

IGR2002 (R) IGR2007 (R) IGR2002 (R) IGR2007 (R)

R-h-index 0.0180 (16) 0.0167 (14) 0.0104 (16) 0.0111 (14)

R-citation 0.0196 (14) 0.0096 (16) 0.0110 (14) 0.0113 (13)

T-ave-h 0.0551 (7) 0.0506 (6) 0.0104 (17) 0.0058 (20)

T-max-h 0.0476 (8) 0.0291 (9) 0.0113 (13) 0.0041 (22)

T-h-first 0.0370 (9) 0.0386 (8) 0.0108 (15) 0.0072 (18)

T-h-max 0.0341 (10) 0.0168 (13) 0.0093 (18) 0.0034 (24)

E-numc \ \ 0.7324 (2) 0.7598 (1)

E-numc-ave \ \ 0.7336 (1) 0.6477 (2)

E-num-years \ \ 0.0002 (27) 0.0105 (15)

6.6.5 Factor Contribution Analysis

To predict whether a paper will increase its primary author’s h-index, we devise

six diverse groups of factors (see §6.5) that may drive the growth of scientific impact.

To explore the contributions and importance of each factor group to the prediction

task, we employ a “jackknife” approach with two cases: (1) one at a time, we remove

a group of factors and evaluate the predictive performance of our model trained only

on the remaining five groups (the “without” case); and (2) one at a time, we use only

a single group of factors and evaluate the predictive performance of our model trained

only on this group (the “with only” case). This approach provides information on the

individual contribution and unique information that each group of factors supplies
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to the overall prediction task. Figure 6.10 provides the F1 scores for the two cases

with different t (2002 and 2007), primary authors (max-h-index and first authors),

and publication dates (new and old). We can see that the contributions of different

groups of factors demonstrate a high degree of variability.

In Figures 6.10(a) and 6.10(b), the ∼20% drop in F1 score demonstrated by the

removal of content factors indicates that they are critically important to predicting

for Pmax
new . By contrast, the marginal decreases in performance demonstrated by the

removal of other types of factors imply that the remaining factors provide a limited

amount of unique information. When used only by themselves, the content factors

still play the most important role in predicting the growth of scientific impact, though

venue factors also achieve a marked effect on performance. Furthermore, with the

exclusion of content factors, all groups of factors demonstrate greater importance

when employed over a longer timeframe ∆t.

From Figures 6.10(c) and 6.10(d), we can see that the existing factors are crucially

important to predicting for Pmax
old , both by themselves (the “with only” contributions)

and when used with other factors (the “without” contributions). Different from pre-

dicting for Pmax
new in Figures 6.10(a) and 6.10(b), author factors play a more important

role than both content and venue factors, observed from the “with only” factor con-

tributions. Overall, we find that this contribution analysis is consistent with the

factor correlation results elaborated upon in the previous section.

Figures 6.10(e) and 6.10(f) show that when predicting for newly published papers,

the content, author, and venue factors contribute the most to the increase of the first

authors’ future h-indices. Similarly, from Figures 6.10(g) and 6.10(h), we can see

that the existing information before t is the most decisive factor group for predicting

whether the previously published papers can contribute to the first authors’ future

h-indices. Surprisingly, we also find that different from the prediction cases in Pmax
new ,

Pmax
old , and P first

new , the role of social factors is comparable with author and venue
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factors when predicting for P first
old .

In summary, when predicting for the newly published papers in Figures 6.10(a),

6.10(b), 6.10(e) and 6.10(f), the content factor group is most crucial to generating

effective predictions, followed by venue, author, and temporal factors. However, ob-

served from Figures 6.10(c), 6.10(d), 6.10(g) and 6.10(h), the existing factor group is

the most telling followed by author and venue factor groups when predicting for pre-

viously published papers. The group of content factors is important when predicting

for the increase of the max-h-index authors, while its effect is not significant compared

to other factors when predicting the contribution to the first authors’ h-indices.

We further examine the contributions of each individual factor to the prediction

tasks. To assess each factor’s importance, we employ the measure of information

gain ratio (IGR) [113], which is based on the expected reduction in entropy—that is,

uncertainty—achieved by learning the state of a given factor. The higher the IGR

for a given factor, the greater its measured importance.

Table 6.9 lists the IGR and corresponding ranking for each individual factor.

When considering the IGR for Pnew, the factors that are indicative of an author’s

topical authority are the most important, including C-authority-max, C-authority-

ave and C-authority-first. Following in importance are the two venue factors. When

considering the IGR for Pold, the factors that are indicative of the number of existing

citations (E-numc and E-numc-ave) achieve the top two positions, followed by author

authorities and venue factors. The IGR calculated for the remaining factors decreases

to the next lowest order of magnitude, indicating that they provide relatively limited

contributions to our prediction tasks.

6.6.6 Prototype h-index Prediction Tool

In light of our investigations into the factors that influence authors’ h-indices, we

have developed an online tool that allows users to generate h-index predictions based
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on our findings. An image of the working prototype is provided as Figure 6.11.

The tool provides separate functionality for predicting the development of authors’

h-indices (left) and predicting whether a paper will contribute to its authors’ h-indices

(right). To predict the development of authors’ h-indices, users may enter basic

author details, such as an author’s current h-index, number of publications, and

initial year of publication. To predict the probability that a paper will contribute to

its authors’ h-indices, users may enter basic paper details, such as the title, author

list, year, venue, and abstract text. These details are then used to generate the

factors described in this work, which serve as input to the h-index growth or paper

contribution model developed through our investigations.

We hope that the tool may be used by scholars to more effectively disseminate

their work and to better gauge their future scientific impact.

185



Figure 6.11. Prototype h-index prediction tool (see http://www.icensa.com/hindex). The prototype provides two distinct
functionalities. On the left, the tool can be used to provide predictions of the development of authors’ h-indices. On the right,

the tool can be used to predict whether a paper will contribute to its authors’ h-indices.
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6.7 Related Work

Scientific impact modeling is being extensively explored and has become an im-

portant and popular research topic [2, 39, 46, 220, 224]. Its study offers the potential

to help scholars more effectively disseminate their work and expand their scientific

influence.

Traditionally, the number of citations has been widely used as a measurement of

scientific impact for both individual papers and solitary scientific researchers. Several

practical metrics have been designed to reflect scientific impact based on citations.

Garfield proposed the impact factor for indexing and evaluating the quality of jour-

nals [69]. More recently, Hirsch proposed the h-index, which attempts to measure

both a researcher’s productivity and the popularity of his or her published work [90].

Both impact factor and h-index successfully characterize the motivations and behav-

ior of the scientific community, where scholars aspire to publish results in high-impact

venues to increase their influence and h-indices and venues aim to publish cogent,

influential work to improve their reputations and impact factors.

Besides its measurement, a large body of work has been focused on the prediction

of scientific impact. The 2003 ACM SIGKDD Cup introduced a competition focused

around citation count prediction [70], with the task of estimating the number of times

a paper has been cited given its previous number of citations. Following this, many

efforts have been made to predict the number of future citations for scholarly work.

Castillo et al. studied the correlation between author reputation and citations [28].

Yan et al. examined a series of features important to future citations [233, 234]. Wang

et al. uncovered basic mechanisms that govern scientific impact, which has the power

to quantify and predict citation counts [181, 224]. However, the effectiveness of such

predictions is fundamentally limited by the heavy-tailed distribution of citations.

Herein we (re)define the impact prediction problem by addressing a related ques-

tion, namely: “which of my papers will increase my (future) h-index?” The crucial
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difference between ours and previous work is that rather than trying to solve a regres-

sion task in a highly skewed environment, we instead tackle the problem by generating

a local threshold (the author’s h-index) for each paper’s future citation count.

Our work is also related to other mining tasks in academic data such as citation

pattern and recommendation [40, 174, 186, 202, 237], topic influence [126, 204], in-

formation flow [184, 185], collaboration prediction [199, 222], and analysis of citation

networks [221] and academic social networks [203]. Further, as the formalization of

our predictive task is partly inspired by the cascade growth prediction problem [32],

the prediction of scientific impact is related to predicting the popularity [5, 93, 170]

of online “paper” (e.g., tweet, video, photo) in social media.

6.8 Conclusion

In this chapter, we study the predictability of scientific impact by formalizing

two problems that can be reduced to the following questions: How will my h-index

evolve over time, and which of my papers will contribute to it? Our primary task

is to determine whether a given paper, either previously or newly published, will

increase the future h-index of its primary author within a predefined timeframe.

To address this task, we first formalize an h-index prediction problem to estimate

researchers’ future h-indices. We then use these estimates as the target for prediction

in our primary task, which offers a powerful way of quantifying the interplay between

researchers and publications and their effects on scientific impact.

Surprisingly, we find that topic diversity and popularity have no statistical cor-

relation with whether a paper will contribute to its primary author’s future h-index.

We also find that two factors—topical authority and publication venue—are critical

in determining whether a newly published paper will contribute to its primary au-

thor’s future h-index, while the existing citation count is the most decisive factor for

a previously published paper. We demonstrate that the contribution of a paper to
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the impact of a researcher with a higher h-index is generally more difficult to predict

than for a researcher with a lower h-index. Finally, we develop an h-index prediction

tool informed by our findings. Overall, our work demonstrates a greater than 90%

potential predictability, as measured by accuracy, for whether a paper will contribute

to its primary author’s h-index within five years.

Future work could study the interplay between a researcher’s estimated future

h-index and the set of papers that we predict will contribute to his or her h-index.

Furthermore, as this work is conducted only on literature from computer science,

examining other scientific disciplines for the same observed patterns could widen the

scope and significance of our findings.
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CHAPTER 7

HETEROGENEOUS NETWORK EMBEDDING LEARNING

7.1 Overview

In this chapter, we study the problem of representation learning in heteroge-

neous networks. The unique challenges come from the existence of multiple types of

nodes and links, which limit the feasibility of the conventional network embedding

techniques. We develop two novel scalable representation learning models, namely

metapath2vec and metapath2vec++. The metapath2vec model formalizes meta-path

based random walks to construct the heterogeneous neighborhood of a node and

then leverages a heterogeneous skip-gram model to perform node embeddings. The

metapath2vec++ model further enables the simultaneous modeling of structural and

semantic correlations in heterogeneous networks. Extensive experiments show that

metapath2vec and metapath2vec++ are able to not only outperform state-of-the-

art embedding models in various heterogeneous network mining tasks, such as node

classification, clustering, and similarity search, but also discern the structural and

semantic correlations between diverse network objects.

This chapter is largely extracted from a pre-print manuscript (see DCS17 in the

NS-CTA publication database). It is a joint work with Nitesh V. Chawla and Anan-

thram Swami.
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7.2 Introduction

Neural network based learning models can represent latent embeddings that cap-

ture the internal relations from rich, complex data of various modalities, such as

image, audio, and language [119]. Social and information networks are rich and

complex data encoding the dynamics and modalities of human interactions, and can

also be amenable to representation learning using neural networks. In particular, by

mapping the way that people choose friends and maintain connections as a “social

language,” the recent advances in natural language processing (NLP) [15] can be nat-

urally applied to network representation learning. And this has indeed been the case,

since the inception of word2vec [145, 146] in NLP. A number of recent research pub-

lications have proposed word2vec based network representation learning networks,

such as DeepWalk [168], LINE [207], and node2vec [82]. Specifically, instead of

handcrafted network feature design, representation learning enables the automatic

discovery of useful and meaningful (latent) features from the “raw networks”.

However, these work have focused on representation learning for homogeneous

networks—representative of singular type of nodes and / or relationships. A number

of social and information networks are heterogeneous in nature, involving diversity

of node types and relationships between nodes [196]. These heterogeneous networks

present unique challenges that cannot be handled by representation learning mod-

els that are specifically designed for homogeneous networks. Take a heterogeneous

academic network as an example, how do we effectively preserve the concept of “word-

context” among multiple types of nodes, e.g., authors, papers, venues, organizations,

etc.? Can random walks, such those used in DeepWalk and node2vec, be applied to

networks of multiple types of nodes? Can we directly apply homogeneous network

oriented embedding architectures (e.g., skip-gram) to heterogeneous networks?

By solving these challenges, the latent heterogeneous network embeddings can

be further applied to various network mining tasks, such as node classification [98],
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clustering [197, 200], and similarity search [198, 240]. In contrast to conventional

meta-path based methods [196], the advantage of latent-space representation learning

lies in its ability to model similarities between nodes without connected meta-paths.

For example, if authors have never published papers in the same venues—imagine

one publishes 10 papers all in NIPS and the other has 10 publications all in ICML,

their “APCPA” based PathSim similarity [198] would be zero—an issue that can be

naturally conquered by network representation learning.

Contributions. We formalize the heterogeneous network representation learning

problem, where the objective is to simultaneously learn the low-dimensional and la-

tent embeddings for multiple types of nodes. We present the metapath2vec and its

extension metapath2vec++ frameworks. The goal of metapath2vec is to maximize the

likelihood of preserving both the structures and semantics of a given heterogeneous

network. In metapath2vec, we first propose meta-path [196] based random walks in

heterogeneous networks to generate heterogeneous neighborhoods with network se-

mantics for various types of nodes. Second, we extend the skip-gram model [146]

to facilitate the modeling of geographically and semantically close nodes. Finally,

we develop a heterogeneous negative sampling based method—referred to as metap-

ath2vec++, enabling the accurate and efficient prediction of a node’s heterogeneous

neighborhood.

The proposed metapath2vec and metapath2vec++ are different from conventional

network embedding models, which focus on homogeneous networks [82, 168, 207].

Specifically, they suffer from the identical treatment for different types of nodes and

relations, leading to the production of indistinguishable representations for hetero-

geneous nodes, as also evident through our evaluation. Further, the metapath2vec

and metapath2vec++ models also differ from the Predictive Text Embedding (PTE)

model [206] in several ways. First, PTE is a semi-supervised learning model that in-

corporates label information for text data. Second, the heterogeneity in PTE comes
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from the text network wherein a link connects two words, a word and its document,

and a word and its label. Essentially, the raw input of PTE is words and its output

is the embedding of each word, rather than multiple types of objects.

As a highlight, we summarize the differences of these methods in Table 7.1, which

lists their input to learning algorithms, as well as the top-five similarity search re-

sults in the DBIS network for the same two queries used in [198] (see Section 7.5 for

detail). By modeling the heterogeneous neighborhood and further leveraging the het-

erogeneous negative sampling technique, metapath2vec++ is able to achieve the best

top-five similar results for both types of queries. Figure 7.1 shows the visualization of

the 2D projections of the learned embeddings for 16 CS conferences and correspond-

ing high-profile researchers in each field. Remarkably, we find that metapath2vec++

is capable of automatically organizing these two types of nodes and implicitly learn-

ing the internal relationships between them, suggested by the similar directions and

distances of the arrows connecting each pair of them, such as J. Dean → OSDI and

C. D. Manning → ACL, and metapath2vec is able to group each pair of one author

and one conference closely, such as R. E. Tarjan and FOCS. All these properties are

not discoverable from conventional network embedding models.

To summarize, our work makes the following contributions:

• Formalizes the problem of heterogeneous network representation learning and
identifies its unique challenges resulting from network heterogeneity.

• Develops effective and efficient network embedding frameworks, metapath2vec
& metapath2vec++, for preserving both structural and semantic correlations of
heterogeneous networks.

• Through extensive experiments, demonstrates the efficacy and scalability of
the presented methods in various heterogeneous network mining tasks, such
as node classification (achieving 35–319% improvement over benchmarks) and
node clustering (achieving 13–16% gain over baselines).

• Demonstrates the automatic discovery of internal semantic relationships be-
tween different types of nodes in heterogeneous networks by metapath2vec &
metapath2vec++, not discoverable by existing work.
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TABLE 7.1

CASE STUDY OF SIMILARITY SEARCH IN THE HETEROGENEOUS DBIS DATA USED IN [198]

Method PathSim [198] DeepWalk/node2vec [82, 168] LINE (1st+2nd) [207] PTE [206] metapath2vec++

Input meta-paths heter. rw paths heter. edges heter. edges prob. meta-paths

Query PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos PKDD C. Faloutsos

1 ICDM J. Han R. S. J. Pan W. K. C. Aggarwal KDD C. Aggarwal KDD R. Agrawal

2 SDM R. Agrawal M. N. H. Tong S. A. P. Yu ICDM P. Yu PAKDD J. Han

3 PAKDD J. Pei R. P. H. Yang A. B. D. Gunopulos SDM Y. Tao ICDM J. Pei

4 KDD C. Aggarwal G. G. R. Filho M. S. N. Koudas DMKD N. Koudas DMKD C. Aggarwal

5 DMKD H. Jagadish F. J. R. Chan S. A. M. Vlachos PAKDD R. Rastogi SDM P. Yu
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Figure 7.1. 2D PCA projections of the 128-d embeddings of 16 top CS
conferences and corresponding high-profile authors learned by DeepWalk /

node2vc, PTE, metapath2vec, and metapath2vec++.

7.3 Problem Definition

We formalize the representation learning problem in heterogeneous networks. In

specific, we define heterogeneous networks and present the learning problem with its

inputs and outputs.

Definition 6 A Heterogeneous Network is defined as a graph G = (V,E, T )

in which each node v and each link e are associated with their mapping functions

φ(v) : V → TV and ϕ(e) : E → TE, respectively. TV and TE denote the sets of object

and relation types, where |TV | + |TE| > 2.
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For example, one can represent the academic network in Figure 7.2(a) with au-

thors (A), papers (P), venues (V), organizations (O) as nodes, wherein edges indicate

the coauthor (A–A), publish (A–P, P–V), affiliation (O–A) relationships. By consid-

ering a heterogeneous network as input, we formalize the problem of heterogeneous

network representation learning as follows.

Problem 5 Heterogeneous Network Representation Learning: Given a het-

erogeneous network G, the task is to learn the d-dimensional latent representations

X ∈ R|V |×d, d � |V | that are able to capture the structural and semantic relations

among them.

The output of the problem is the low-dimensional matrix X, with the vth row—a

d-dimensional vector Xv—corresponding to the representation of node v. Notice that,

although there are different types of nodes in V , their representations are mapped

into the same latent space. The learned node representations can benefit various

heterogeneous network mining tasks. For example, the embedding vector of each

node can be used as the feature input of node classification, clustering, and similarity

search tasks.

The main challenge of this problem comes from the network heterogeneity, wherein

it is difficult to directly apply homogeneous language and network embedding meth-

ods. The premise of network embedding models is to preserve the proximity between

a node and its neighborhood (context) [82, 168, 207]. In a heterogeneous environ-

ment, how do we define and model this ‘node–neighborhood’ concept? Furthermore,

how do we optimize the embedding models that effectively maintain the structures

and semantics of multiple types of nodes and relations?
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Figure 7.2. An illustrative example of a heterogeneous network and skip-gram architectures of metapath2vec and
metapath2vec++ for embedding this network. (a). Yellow dot lines denote coauthor relationships and red dot lines denote
citation relationships. (b) The skip-gram architecture used in metapath2vec when predicting for a4, which is the same with

the one in node2vec if node types are ignored. |V |=12 denotes the number of nodes in the heterogeneous academic network in
(a) and a4’s neighborhood is set to include CMU, a2, a3, a5, p2, p3, ACL, & KDD, making k = 8. (c) The heterogeneous

skip-gram used in metapath2vec++. Instead of one set of multinomial distributions for all types of neighborhood nodes in the
output layer, it specifies one set of multinomial distributions for each type of nodes in a4’s neighborhood. Vt denotes one

specific t-type nodes and V = VV ∪ VA ∪ VO ∪ VP . kt specifies the size of a particular type of one’s neighborhood and k = kV
+ kA + kO + kP .
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7.4 The metapath2vec Framework

We present a general framework, metapath2vec, which is capable of learning desir-

able node representations in heterogeneous networks. The objective of metapath2vec

is to maximize the network probability in consideration of multiple types of nodes

and edges.

7.4.1 Skip-Gram in Homogeneous Network Embedding

We, first, briefly introduce the word2vec model and its application to homogeneous

network embedding tasks. Given a text corpus, Mikolov et al. proposed word2vec

to learn the distributed representations of words in a corpus [145, 146]. Inspired

by it, DeepWalk [168] and node2vec [82] aim to map the word-context concept in

a text corpus into a network. Both methods leverage random walks to achieve this

and utilize the skip-gram model to learn the representation of a node that facilitates

the prediction of its structural context—local neighborhoods—in a homogeneous net-

work. Usually, given a network G = (V,E), the objective is to maximize the network

probability in terms of local structures, that is:

arg max
θ

∏
v∈V

∏
c∈N(v)

p(c|v; θ) (7.1)

where N(v) is the neighborhood of node v in the network G, which can be defined

in different ways such as v’s one-hop neighbors, and p(c|v; θ) defines the conditional

probability of having a context node c given a node v.

7.4.2 Heterogeneous Network Embedding: metapath2vec

To model the heterogeneous neighborhood of a node, metapath2vec introduces the

heterogeneous skip-gram model. To incorporate the heterogeneous network struc-

tures into skip-gram, we propose meta-path based random walks in heterogeneous
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networks.

Heterogeneous Skip-Gram. In metapath2vec, we enable skip-gram to learn

effective node representations for a heterogeneous network G = (V,E, T ) with |TV | >

1 by maximizing the probability of having the heterogeneous context Nt(v), t ∈ TV

give a node v:

arg max
θ

∑
v∈V

∑
t∈TV

∑
ct∈Nt(v)

log p(ct|v; θ) (7.2)

where Nt(v) denotes v’s neighborhood with the tth type of nodes and p(ct|v; θ) is

commonly defined as a softmax function [15, 76, 146, 176], that is: p(ct|v; θ) =

eXct ·Xv∑
u∈V e

Xu·Xv , where Xv is the vth row of X, representing the embedding vector for node

v. For illustration, consider the academic network in Figure 7.2(a), the neighborhood

of one author node a4 can be structurally close to other authors (e.g., a2, a3 & a4),

venues (e.g., ACL & KDD), organizations (CMU & MIT), as well as papers (e.g., p2

& p3).

To achieve efficient optimization, Mikolov et al. introduced negative sampling [146],

in which a relatively small set of words (nodes) are sampled from the corpus (network)

for the construction of softmax. We leverage the same technique for metapath2vec.

Given a negative sample size M , Eq. 7.2 is updated as follows: log σ(Xct · Xv) +∑M
m=1 Eum∼P (u)[log σ(−Xum · Xv)], where σ(x) = 1

1+e−x
and P (u) is the pre-defined

distribution from which a negative node um is drew from for M times. metapath2vec

builds the the node frequency distribution by viewing different types of nodes homo-

geneously and draw (negative) nodes regardless of their types.

Meta-Path Based Random Walks. How to effectively transform the structure

of a network into skip-gram? In DeepWalk [168] and node2vec [82], this is achieved

by incorporating the node paths traversed by random walkers over a network into

the neighborhood function.
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Naturally, we can put random walkers in a heterogeneous network to generate

paths of multiple types of nodes. At step i, the transition probability p(vi+1|vi) is

denoted as the normalized probability distributed over the neighbors of vi by ignoring

their node types. The generated paths can be then used as the input of node2vec and

DeepWalk. However, Sun et al. demonstrated that heterogeneous random walks are

biased to highly visible types of nodes—those with a dominant number of paths—and

concentrated nodes—those with a governing percentage of paths pointing to a small

set of nodes [198].

In light of these issues, we design meta-path based random walks to generate

paths that are able to capture both the semantic and structural correlations between

different types of nodes, facilitating the transformation of heterogeneous network

structures into metapath2vec’s skip-gram.

Formally, a meta-path scheme P is defined as a path that is denoted in the form

of V1
R1−→ V2

R2−→ · · ·Vt
Rt−→ Vt+1 · · ·

Rl−1−−−→ Vl, wherein R = R1 ◦ R2 ◦ · · · ◦ Rl−1 defines

the composite relations between node types V1 and Vl [196]. Take Figure 7.2(a) as

an example, a meta-path “APA” represents the coauthor relationships on a paper

(P) between two authors (A), and “APVPA” represents two authors (A) publish

papers (P) in the same venue (V). Previous work has shown that many data mining

tasks in heterogeneous information networks can benefit from the modeling of meta

paths [196].

Here we show how to use meta-paths to guide heterogeneous random walkers.

Given a heterogeneous network G = (V,E, T ) and a meta-path scheme P : V1
R1−→

V2
R2−→ · · ·Vt

Rt−→ Vt+1 · · ·
Rl−1−−−→ Vl, the transition probability at step i is defined as
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follows:

p(vi+1|vit,P) =


1

|Nt+1(vit)|
(vi+1, vit) ∈ E, φ(vi+1) = t+1

0 (vi+1, vit) ∈ E, φ(vi+1) 6= t+1

0 (vi+1, vit) /∈ E

(7.3)

where vit ∈ Vt and Nt+1(vit) denotes the Vt+1 type of neighborhood of node vit. In other

words, vi+1 ∈ Vt+1, that is, the flow of the walker is conditioned on the pre-defined

meta-path P . In addition, meta-paths are commonly used in a symmetric way, that

is, its first node type V1 is the same with the last one Vl [196–198], facilitating its

recursive guidance for random walkers, i.e.,

p(vi+1|vit) = p(vi+1|vi1), if t = l (7.4)

The meta-path based random walk strategy ensures that the semantic relation-

ships between different types of nodes can be properly incorporated into skip-gram.

For example, in a traditional random walk procedure, in Figure 7.2(a), the next step

of a walker on node a4 transitioned from node CMU can be all types of nodes sur-

rounding it—a2, a3, a5, p2, p3, and CMU. However, under the meta-path scheme

‘OAPVPAO’, for example, the walker is biased towards paper nodes (P) given its

previous step on an organization node CMU (O), following the semantics of this

path.

7.4.3 The metapath2vec++ Model

metapath2vec distinguishes the context nodes of node v conditioned on their types

when constructing its neighborhood function Nt(v) in Eq. 7.2. However, it ignores

the node type information in softmax. In other words, in order to infer the specific

type of context ct in Nt(v) given a node v, metapath2vec actually encourages all types
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of negative samples, including nodes of the same type t as well as the other types in

the heterogeneous network.

Heterogeneous negative sampling. We further propose the metapath2vec++

framework, in which the softmax function is normalized with respect to the node

type of the context ct. Specifically, p(ct|v; θ) is adjusted to the specific node type t,

that is,

p(ct|v; θ) =
eXct ·Xv∑

ut∈Vt e
Xut ·Xv

(7.5)

where Vt is the node set of type t in the network. In doing so, metapath2vec++

specifies one set of multinomial distributions for each type of neighborhood in the

output layer of the skip-gram model. Recall that in metapath2vec and node2vec /

DeepWalk, the dimension of the output multinomial distributions is equal to the

number of nodes in the network. However, in metapath2vec++’s skip-gram, the

multinomial distribution dimension for type t nodes is determined by the number of

t-type nodes. A clear illustration can be seen in Figure 7.2(c). For example, given the

target node a4 in the input layer, metapath2vec++ outputs four sets of multinomial

distributions, each corresponding to one type of neighbors—venues V , authors A,

organizations O, and papers P .

Inspired by PTE [206], the sampling distribution is also specified by the node

type of the neighbor ct that is targeted to predict, i.e., Pt(·). Therefore, we have the

following objective:

O(X) = log σ(Xct ·Xv) +
M∑
m=1

Eumt ∼Pt(ut)[log σ(−Xumt
·Xv)] (7.6)
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whose gradients are derived as follows:

∂O(X)

∂Xumt

= (σ(Xumt
·Xv − Ict [umt ]))Xv (7.7)

∂O(X)

∂Xv

=
M∑
m=0

(σ(Xumt
·Xv − Ict [umt ]))Xumt

where Ict [umt ] is an indicator function to indicate whether umt is the neighborhood

context node ct and when m = 0, u0
t = ct. The model is optimized by using stochas-

tic gradient descent algorithm. The pseudo code of metapath2vec++ is listed in

Algorithm 2.

7.5 Experiments

In this section, we demonstrate the efficacy and efficiency of the presented meta-

path2vec and metapath2vec++ frameworks for heterogeneous network representation

learning.

Data. We use two heterogeneous networks, including the AMiner Computer Science

(CS) dataset [203] and the Database and Information Systems (DBIS) dataset [198].

Both datasets are publicly available.

This AMiner CS dataset consists of 9,323,739 computer scientists and 3,194,405

papers from 3,883 computer science venues—both conferences and journals—held

until 2016. We construct a heterogeneous collaboration network, in which there are

three types of nodes: authors, papers, and venues. The links represent different types

of relationships among three sets of nodes—such as collaboration relationships on a

paper.

The DBIS dataset was constructed and used by Sun et al. [198]. It covers 464

venues, their top-5000 authors, and corresponding 72,902 publications. We also con-

struct the heterogeneous collaboration networks from DBIS wherein a link may con-
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ALGORITHM 2: The metapath2vec++ Algorithm.

Input: The heterogeneous information network G = (V,E, T ), a meta-path
scheme P , #walks per node w, walk length l, embedding dimension d,
neighborhood size k

Output: The latent node embeddings X ∈ R|V |×d

initialize X ;
for i = 1 → w do

for v ∈ V do
MP = MetaPathRandomWalk(G, P , v, l) ;
X = HeterogeneousSkipGram(X, k, MP) ;

end

end
return X ;

MetaPathRandomWalk(G, P , v, l)
MP [1] = v ;
for i = 1 → l−1 do

draw u according to Eq. 7.3 ;
MP [i+1] = u ;

end
return MP ;

HeterogeneousSkipGram(X, k, MP)
for i = 1 → l do

v = MP [i] ;
for j = max(0, i-k) → min(i+k, l) & j 6= i do

ct = MP [j] ;

Xnew = Xold − η · ∂O(X)
∂X

(Eq. 7.7) ;

end

end

nect two authors, one author and one paper, as well as one paper and one venue.

7.5.1 Experimental Setup

We compare—metapath2vec and metapath2vec++—with several recent network

representation learning methods:

• DeepWalk [168] / node2vec [82]: With the same random walk path input
(p=1 & q=1 in node2vec), we find that the choice between hierarchical soft-
max (DeepWalk) and negative sampling (node2vec) techniques does not yield
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significant differences. Therefore we use p=1 and q=1 [82] in node2vec for
comparison.

• LINE [207]: We use the advanced version of LINE by considering both the 1st
and 2nd order of node proximity;

• PTE [206]: We construct three bipartite heterogeneous networks—author–
author, author–venue, venue–venue—and restrain it as an unsupervised em-
bedding method;

• Spectral Clustering [209] / Graph Factorization [4]: With the same treatment
to these methods in the node2vec work [82], we make them excluded for compar-
ison, as previous studies have demonstrated the outperformance of DeepWalk
and LINE to them.

For all embedding methods, we use the same parameters listed below. In addition,

we also vary each of them and fix the others for examining the parameter sensitivity

of the proposed methods.

• The number of walks per node w: 1000;

• The walk length l: 100;

• The vector dimension d: 128 (LINE: 128 for each order);

• The neighborhood size k: 7;

• The size of negative samples: 5.

For metapath2vec and metapath2vec++, we also need to specify the meta-path

scheme to guide random walks. We surveyed most of the meta-path based work and

found that the most commonly and effectively used meta-path schemes in hetero-

geneous academic networks are “APA” and “APVPA” [196, 198, 200]. Notice that

“APA” denotes the coauthor semantic, that is, the traditional (homogeneous) col-

laboration links / relationships. “APVPA” represents the heterogeneous semantic of

‘authors publish papers at the same venues’. Our empirical results also show that this

simple meta-path scheme “APVPA” can lead to node embeddings that can be gen-

eralized to diverse heterogeneous academic mining tasks, suggesting its applicability

to potential applications for academic search services.
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We evaluate the quality of the latent representations learned by different methods

over three classical heterogeneous network mining tasks, including multi-class node

classification [98], node clustering [200], and similarity search [198]. In addition, we

also use the embedding projector in TensorFlow [1] to visualize the node embeddings

learned from the heterogeneous academic networks.

7.5.2 Multi-Class Classification

For the classification task, we use third-party labels to determine the class of each

node. First, we match the following eight categories of venues in Google Scholar

with those in AMiner data: Computational Linguistics, Computer Graphics, Com-

puter Networks & Wireless Communication, Computer Vision & Pattern Recognition,

Computing Systems, Databases & Information Systems, Human Computer Interac-

tion, and Theoretical Computer Science. Among all of the 160 venues (20 per category

× 8 categories), 133 of them are successfully matched and labeled correspondingly

(Most of unmatched venues are pre-print venues, such as arXiv). Second, for each

author who published in these 133 venues, his / her label is assigned to the category

with the majority of his / her publications, and a tie is resolved by random selection

among the possible categories; 246,678 authors are labeled with research category.

Note that the node representations are learned from the full dataset. The em-

beddings of above labeled nodes are then used as the input to a logistic regression

classifier. In the classification experiments, we vary the size of the training set from

5% to 50% and the remaining nodes for testing. We repeat each prediction experi-

ment ten times and report the average performance in terms of both Macro-F1 and

Micro-F1 scores.
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TABLE 7.2

MULTI-CLASS VENUE CLASSIFICATION RESULTS (F1) IN AMINER DATA

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

node2vec 0.0723 0.1396 0.1905 0.2795 0.3427 0.3911 0.4424 0.4774 0.4955 0.4457

LINE(1st+2nd) 0.2245 0.4629 0.7011 0.8473 0.8953 0.9203 0.9308 0.9466 0.9410 0.9466

PTE 0.1702 0.3388 0.6535 0.8304 0.8936 0.9210 0.9352 0.9505 0.9525 0.9489

metapath2vec 0.3033 0.5247 0.8033 0.8971 0.9406 0.9532 0.9529 0.9701 0.9683 0.9670

metapath2vec++ 0.3090 0.5444 0.8049 0.8995 0.9468 0.9580 0.9561 0.9675 0.9533 0.9503

Micro-F1

node2vec 0.1701 0.2142 0.2486 0.3266 0.3788 0.4090 0.4630 0.4975 0.5259 0.5286

LINE(1st+2nd) 0.3000 0.5167 0.7159 0.8457 0.8950 0.9209 0.9333 0.9500 0.9556 0.9571

PTE 0.2512 0.4267 0.6879 0.8372 0.8950 0.9239 0.9352 0.9550 0.9667 0.9571

metapath2vec 0.4173 0.5975 0.8327 0.9011 0.9400 0.9522 0.9537 0.9725 0.9815 0.9857

metapath2vec++ 0.4331 0.6192 0.8336 0.9032 0.9463 0.9582 0.9574 0.9700 0.9741 0.9786
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TABLE 7.3

MULTI-CLASS AUTHOR CLASSIFICATION RESULTS (F1) IN AMINER DATA

Metric Method 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Macro-F1

node2vec 0.7153 0.7222 0.7256 0.7270 0.7273 0.7274 0.7273 0.7271 0.7275 0.7275

LINE(1st+2nd) 0.8849 0.8886 0.8911 0.8921 0.8926 0.8929 0.8934 0.8936 0.8938 0.8934

PTE 0.8898 0.8940 0.897 0.8982 0.8987 0.8990 0.8997 0.8999 0.9002 0.9005

metapath2vec 0.9216 0.9262 0.9292 0.9303 0.9309 0.9314 0.9315 0.9316 0.9319 0.9320

metapath2vec++ 0.9107 0.9156 0.9186 0.9199 0.9204 0.9207 0.9207 0.9208 0.9211 0.9212

Micro-F1

node2vec 0.7312 0.7372 0.7402 0.7414 0.7418 0.7420 0.7419 0.7420 0.7425 0.7425

LINE(1st+2nd) 0.8936 0.8969 0.8993 0.9002 0.9007 0.9010 0.9015 0.9016 0.9018 0.9017

PTE 0.8986 0.9023 0.9051 0.9061 0.9066 0.9068 0.9075 0.9077 0.9079 0.9082

metapath2vec 0.9279 0.9319 0.9346 0.9356 0.9361 0.9365 0.9365 0.9365 0.9367 0.9369

metapath2vec++ 0.9173 0.9217 0.9243 0.9254 0.9259 0.9261 0.9261 0.9262 0.9264 0.9266
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Results. Tables 7.2 and 7.3 list the eight-class classification results for venues and

authors, respectively. Overall, the proposed metapath2vec and metapath2vec++ mod-

els consistently and significantly outperform all baselines in terms of both metrics.

When predicting for the venue category, the advantage of both metapath2vec and

metapath2vec++ are particular strong given a small size of training data. Given 5%

of nodes as training data, for example, metapath2vec and metapath2vec++ achieve

35–319% improvement in terms of Macro-F1 and 39–145% gain in terms of Micro-F1

over DeepWalk / node2vec, LINE, and PTE. When predicting for authors’ categories,

the performance of each method is relatively stable when varying the train-test split.

The constant gain achieved by the proposed methods is around 2–3% over LINE and

PTE, and ∼20% over DeepWalk / node2vec.

In summary, metapath2vec and metapath2vec++ learn significantly better het-

erogeneous node embeddings than current state-of-the-art methods, as measured

by multi-class classification performance. The advantage of the proposed methods

lies in their proper consideration and accommodation of the network heterogeneity

challenge—the existence of multiple types of nodes and relations.

Parameter sensitivity. In skip-gram based representation learning models, there

exist several common parameters (see Section 7.5.1). We conduct a sensitivity anal-

ysis of metapath2vec++ to these parameters. Figure 7.3 shows the classification

results as a function of one chosen parameter when the others are controlled for. In

general, we find that in Figures 7.3(a) and 7.3(b) the number of walks w rooting

from each node and the length l of each walk are positive to the author classification

performance, while they are surprisingly inconsequential for inferring venue nodes’

categories as measured by Macro-F1 and Micro-F1 scores. The increase of author

classification performance converges as w and l reach around 1000 and 100, respec-

tively. Similarly, Figures 7.3(c) and 7.3(d) suggest that the number of embedding

dimensions d and neighborhood size k are again of relatively little relevance to the
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Figure 7.3. Parameter sensitivity in multi-class node classification. 50% as
training data and the remaining as test data.

predictive task for venues, and k on the other hand is positively crucial to determine

the class of a venue. However, the descending lines as the increase of k for author

classifications imply that a smaller neighborhood size actually produces the best em-

beddings for separating authors. This finding differs from those in a homogeneous

environment [82], wherein the neighborhood size generally shows a positive effect on

node classification.

According to the analysis, metapath2vec++ is not strictly sensitive to these pa-

rameters and is able to reach high performance under a cost-effective parameter choice
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TABLE 7.4

NODE CLUSTERING RESULTS (NMI) IN THE AMINER DATA

methods venue author

node2vec 0.1952 0.2941

LINE (1st+2nd) 0.8967 0.6423

PTE 0.9060 0.6483

metapath2vec 0.9274 0.7470

metapath2vec++ 0.9261 0.7354

(the smaller, the more efficient). In addition, our results also indicate that those com-

mon parameters show different functions for heterogeneous network embedding with

those in homogeneous network cases, demonstrating the request of different ideas and

solutions for heterogeneous network representation learning.

7.5.3 Node Clustering

We illustrate how the latent representations learned by embedding methods can

help the node clustering task in heterogeneous networks. We employ the same eight-

category author and venue nodes used in the classification task above. The learned

embeddings by each method is input to a clustering model. Here we leverage the

k-means algorithm to cluster the data and evaluate the clustering results in terms

of normalized mutual information (NMI) [198]. In addition, we also report metap-

ath2vec++’s sensitivity with respect to different parameter choices. All clustering

experiments are conducted 10 times and the average performance is reported.

Results. Table 7.4 shows the node clustering results as measured by NMI in the

AMiner CS data. Overall, the table demonstrates that metapath2vec and metap-
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ath2vec++ outperforms all the comparative methods. When clustering for venues,

the task is trivial as evident from the high NMI scores produced by most of the

methods: metapath2vec, metapath2vec++, LINE, and PTE. Nevertheless, the pro-

posed two methods outperform LINE and PTE by 2–3%. The author clustering task

is more challenging than the venue case, and the gain obtained by metapath2vec and

metapath2vec++ over the best baselines (LINE and PTE) is more significant—around

13–16%.

In summary, metapath2vec and metapath2vec++ generate more appropriate em-

beddings for different types of nodes in the network than comparison baselines, sug-

gesting their ability to capture and incorporate the underlying structural and seman-

tic relationships between various types of nodes in heterogeneous networks.

Parameter sensitivity. Following the same experimental procedure in classifi-

cation, we study the parameter sensitivity of metapath2vec++ as measured by the

clustering performance. Figure 7.4 shows the clustering performance as a function

of each of the four parameters when fixing the other three. From Figures 7.4(a)

and 7.4(b), we can observe that the balance between computational cost (a small w

and l in x-axis) and efficacy (a high NMI in y-axis) can be achieved at around w

= 800∼1000 and l = 100 for the clustering of both authors and venues. Further,

different from the positive effect of increasing w and l on author clustering, d and k

are negatively correlated with the author clustering performance, as observed from

Figures 7.4(c) and 7.4(d). Similarly, the venue clustering performance also shows an

descending trend with an increasing d, while on the other hand, we observe a first-

increasing and then-decreasing NMI line when k is increased. Both figures together

imply that d = 128 and k = 7 are capable of embedding heterogeneous nodes into

latent space for promising clustering outcome.
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Figure 7.4. Parameter sensitivity in clustering.

7.5.4 Case Study: Similarity Search

We conduct two case studies to demonstrate the efficacy of our methods. We first

select 5 top conferences from the four covered fields in the DBIS data as query nodes,

and then select one top conference each from the 16 computer science fields in the

AMiner full CS data. We use cosine similarity to determine the distance (similarity)

between the query node and the remaining others.

Tables 7.6 and 7.7 list the top ten similar results for querying the 16 leading

conferences in corresponding computer science sub-fields in AMiner data. One can
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observe that for the query “ACL”, for example, metapath2vec++ returns venues with

the same focus—natural language processing, such as EMNLP (1), NAACL (2), Com-

putational Linguistics (3), CoNLL (4), COLING (5), and so on. Similar performance

can be also achieved when querying all the other conferences from various domains.

More surprisingly, we find that in most cases, the top three results cover venues with

similar prestige to the query one, such as STOC to FOCS in theory, OSDI to SOSP

in system, HPCA to ISCA in architecture, CCS to S&P in security, CSCW to CHI

in human-computer interaction, EMNLP to ACL in NLP, ICML to NIPS in machine

learning, WSDM to WWW in Web, AAAI to IJCAI in artificial intelligence, VLDB

to SIGMOD in database, etc. Similar results can also be observed in Tables 7.5 and

7.1, which show the similarity search results in the DBIS network.
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TABLE 7.5

CASE STUDY OF COMPUTER SCIENCE VENUE SIMILARITY

SEARCH IN DBIS DATA

Rank KDD SIGMOD SIGIR WWW WSDM

0 KDD SIGMOD SIGIR WWW WSDM

1 SDM PVLDB TREC CIKM WWW

2 ICDM ICDE CIKM SIGIR SIGIR

3 DMKD TODS IPM KDD KDD

4 KDD E VLDBJ IRJ ICDE AIRWeb

5 PKDD PODS ECIR TKDE CIKM

6 PAKDD EDBT TOIS VLDB WebDB

7 TKDE CIDR WWW TOTT ICDM

8 CIKM TKDE JASIST SIGMOD VLDB

9 ICDE ICDT JASIS WebDB VLDBJ

10 TKDD DE Bull SIGIRF WISE SDM
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TABLE 7.6

CASE STUDY I OF CS VENUE SIMILARITY SEARCH IN AMINER DATA

Area Theory System Arch Security Software Graphics Commun. HCI

Rank FOCS SOSP ISCA S&P ICSE SIGGRAPH SIGCOMM CHI

0 FOCS SOSP ISCA S&P ICSE SIGGRAPH SIGCOMM CHI

1 STOC TOCS HPCA CCS TOSEM TOG CCR CSCW

2 SICOMP OSDI MICRO NDSS FSE SI3D HotNets TOCHI

3 SODA HotOS ASPLOS USENIX S ASE RT NSDI UIST

4 A-R SIGOPS E PACT ACSAC ISSTA CGF CoNEXT DIS

5 TALG ATC ICS JCS E SE NPAR IMC HCI

6 ICALP NSDI HiPEAC ESORICS MSR Vis TON MobileHCI

7 ECCC OSR PPOPP TISS ESEM JGT INFOCOM INTERACT

8 TOC ASPLOS ICCD ASIACCS A SE VisComp PAM GROUP

9 JAlG EuroSys CGO RAID ICPC GI MobiCom NordiCHI

10 ITCS SIGCOMM ISLPED CSFW WICSA CG IPTPS UbiComp
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TABLE 7.7

CASE STUDY II OF CS VENUE SIMILARITY SEARCH IN AMINER DATA

Area NLP ML DM Web AI Database IR Vision

Rank ACL NIPS KDD WWW IJCAI SIGMOD SIGIR CVPR

0 ACL NIPS KDD WWW IJCAI SIGMOD SIGIR CVPR

1 EMNLP ICML SDM WSDM AAAI PVLDB ECIR ECCV

2 NAACL AISTATS TKDD CIKM AI ICDE CIKM ICCV

3 CL JMLR ICDM TWEB JAIR DE Bull IRJ IJCV

4 CoNLL NC DMKD ICWSM ECAI VLDBJ TREC ACCV

5 COLING MLJ KDD E HT KR EDBT SIGIRF CVIU

6 IJCNLP COLT WSDM SIGIR AI Mag TODS ICTIR BMVC

7 NLE UAI CIKM KDD ICAPS CIDR WSDM ICPR

8 ANLP KDD PKDD TIT CI SIGMOD R TOIS EMMCVPR

9 LREC CVPR ICML WISE AIPS WebDB IPM T on IP

10 EACL ECML PAKDD WebSci UAI PODS AIRS WACV
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7.5.5 Case Study: Visualization

We employ the TensorFlow embedding projector to further visualize the low-

dimensional node representations learned by embedding models. First, we project

multiple types of nodes—16 top CS conferences and corresponding top-profile authors—

into the same space in Figure 7.1. From Figure 7.1(d), we can clearly see that meta-

path2vec++ is able to automatically organize these two types of nodes and implicitly

learn the internal relationships between them, indicated by the similar directions and

distances of the arrows connecting each pair of them, such as J. Dean → OSDI, C.

D. Manning → ACL, R. E. Tarjan → FOCS, M. I. Jordan → NIPS, and so on. In

addition, these two types of nodes are clearly located in two separate and straight

columns. Neither of these two remarkable results can be made by the recent network

embedding models in Figures 7.1(a) and 7.1(b).

As to metapath2vec, instead of separating the two types of nodes into two columns,

it is capable of grouping each pair of one venue and its corresponding author closely,

such as R. E. Tarjan and FOCS, H. Jensen and SIGGRAPH, H. Ishli and CHI, R.

Agrawal and SIGMOD, etc. Together, both models arrange nodes from similar fields

close to each other and dissimilar ones distant from each other, such as the “Core CS”

cluster of systems (OSDI), networking (SIGCOMM), security (S&P), and architecture

(ISCA), as well as the “Big AI” cluster of data mining (KDD), information retrieval

(SIGIR), artificial intelligence (AI), machine learning (NIPS), NLP (ACL), and vision

(CVPR). These groupings are also reflected by their corresponding author nodes.

Second, Figure 7.5 visualizes the latent vectors—learned by metapath2vec++—of

48 venues used in similarity search of Section 7.5.4, three each from 16 sub-fields.

We can see that conferences from the same domain are geographically grouped to

each other and each group is well separated from others, further demonstrating the

embedding ability of metapath2vec++. In addition, the cosine similarity between

each pair of venues is presented in Figure 7.6, further demonstrating the embedding
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Figure 7.5. 2D t-SNE projections of the 128-d embeddings learned by
metapath2vec++ of 48 CS venues, three each from 16 sub-fields.

ability of metapath2vec++. Similar to the observation in Figure 7.1, we can also

notice that the heterogeneous embeddings are able to unveil the similarities across

different domains, including the “Core CS” sub-field cluster at the bottom right and

the “Big AI” sub-field clusters at the top right.

Finally, Figures 7.7 and 7.8 plot the 2D t-SNE projections of eight-category venues

and authors used in the node classification and clustering tasks in Sections 7.5.2 and

7.5.3, respectively. When visualizing the eight-category venues (Figure 7.7), both

proposed methods and LINE / PTE demonstrate their abilities to separate each

category of nodes with others, while DeepWalk and node2vec do not. In general, it

is difficult to tell the best separation for venues among LINE, PTE, metapath2vec,

and metapath2vec++. When it comes to author visualization, Figure 7.8 suggests
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Figure 7.6. Cosine similarity between 48 CS venues, three each from 16
sub-fields.

that the eight clusters provided by metapath2vec and metapath2vec++ are relatively

more visible and separable than the other baselines.

All together, the visualization intuitively demonstrates metapath2vec++’s novel

capability to discover, model, and capture the underlying structural and semantic

relationships between multiple types of nodes in heterogeneous networks.
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(a) DeepWalk / node2vec (b) LINE (c) PTE

(d) metapath2vec (e) metapath2vec++

Figure 7.7. t-SNE visualization of 133 venues in the 8-category data. For all plots, the same parameters—perplexity: 20,
learning rate: 1, and #iterations: 2000—are used in TensorFlow online embedding projector.
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(a) DeepWalk / node2vec (b) LINE (c) PTE

(d) metapath2vec (e) metapath2vec++

Figure 7.8. t-SNE visualization of 10,000 randomly sampled authors from the 8-category data. For all plots, the same
parameters—perplexity: 20, learning rate: 10, and #iterations: 2000—are used in TensorFlow online embedding projector.
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Figure 7.9. Scalability of metapath2vec and metapath2vec++.

7.5.6 Scalability

In the era of big (network) data, it is necessary to demonstrate the scalability of

the proposed network embedding models. The metapath2vec and metapath2vec++

methods can be parallelized by using the same mechanism of word2vec and node2vec

[82, 146]. All codes are implemented in C and C++ and our experiments are con-

ducted in a computing server with Quad 12 (48) core 2.3 GHz Intel Xeon CPUs

E7-4850. We run experiments on the AMiner CS data with the default parameters

with different number of threads, i.e., 1, 2, 4, 8, 16, 24, 32, 40, each of them utilizing

one CPU core.

Figure 7.9 shows the speedup of metapath2vec & metapath2vec++ over the one-

thread running case. Optimal speedup performance is denoted by the dashed y =

x line, which represents perfect distribution and execution of computation across
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all CPU cores. In general, we find that both methods achieve acceptable sublinear

speedups as both lines are close to the optimal line. In specific, they can reach

11–12× speedup with 16 cores and 24–32× speedup with 40 cores used. By using

40 cores, metapath2vec++’s learning process costs only 9 minutes for embedding

the full AMiner CS network, which is composed of over 9 million authors’ 3 million

papers published in more than 3800 venues. Overall, the proposed metapath2vec

and metapath2vec++ models are efficient and scalable for large-scale heterogeneous

networks with millions of nodes.

7.6 Related Work

Network representation learning can be traced back to the usage of latent factor

models for network analysis and graph mining tasks [91, 235], such as the applica-

tion of factorization models for recommendation systems [109, 132], node classifica-

tion [210], relational mining [160], and role discovery [87]. This rich line of research

focuses on factorizing the matrix / tensor format (e.g., the adjacency matrix) of a

network, generating latent-dimension features for nodes or edges in this network.

However, the computational cost of decomposing a large-scale matrix/tensor is usu-

ally very expensive, and also suffers from its statistical performance drawback [82],

making it neither practical nor effective for addressing tasks in big networks.

With the advent of deep learning techniques, significant effort has been devoted to

designing neural network based representation learning models. For example, Mikolov

et al. proposed the word2vec framework—a two-layer neural network—to learn the

distributed representations of words in natural language [145, 146]. Building on

word2vec, Perozzi et al. notioned that the “context” of a node can be denoted by their

co-occurrence in a random walk path [168]. Formally, they put random walkers over

networks to record their walking paths, each of which is composed of a chain of nodes

that could be considered as a “sentence” of words in a text corpus. More recently, in
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order to diversify the neighborhood of a node, Grover & Leskovec presented biased

random walkers—a mixture of breadth-first and width-first search procedures—over

networks to produce paths of nodes [82]. With node paths generated, both works

leveraged the skip-gram architecture in word2vec to model the structural correlations

between nodes in a path. In addition, several other methods have been proposed for

learning representations in networks [30, 31, 97, 165, 175]. In particular, to learn

network embeddings, Tang et al. decomposed a node’s context into first- (friends)

and second-order (friends’ friends) proximity [207], which was further developed into

a semi-supervised model PTE for embedding text data [206].

In this work, we further this direction of research by designing the metapath2vec

and metapath2vec++ models to capture heterogeneous structural and semantic cor-

relations exhibited from large-scale networks with multiple types of nodes, which

can not be handled by previous models, and apply these models on various network

mining tasks.

7.7 Conclusion

In this chapter, we formally define the representation learning problem in hetero-

geneous networks in which there exist diverse types of nodes and links. To address the

network heterogeneity challenge, we propose the metapath2vec and metapath2vec++

methods. We develop the meta-path guided random walk strategy in a heterogeneous

network, which is capable of capturing both the structural and semantic correlations

of differently typed nodes and relations. By leveraging this method, we formalize

the heterogeneous neighborhood function of a node, enabling the skip-gram based

maximization of the network probability in the context of multiple types of nodes.

Finally, we achieve the effective and efficient optimization by presenting a hetero-

geneous negative sampling technique. Extensive experiments demonstrate that the

latent feature representations learned by metapath2vec and metapath2vec++ are able
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to improve various heterogeneous network mining tasks, such as similarity search,

node classification, and clustering. Our results can be naturally applied to real-world

applications in heterogeneous academic networks, such as author, venue, and paper

search in academic search services.

Future work includes various optimizations and improvements. For example, 1)

the metapath2vec and metapath2vec++ models, as is also the case with DeepWalk

and node2vec, face the challenge of large intermediate output data when sampling

a network into a huge pile of paths, and thus optimizing the sampling space is an

important direction; 2) as is also the case with all meta-path based heterogeneous net-

work mining methods, metapath2vec and metapath2vec++ can be further improved

by the automatic learning of meaningful meta-paths; and 3) extending the models to

incorporate the dynamics of evolving heterogeneous networks.
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CHAPTER 8

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize the observations discovered from massive social

and information networks, as well as the computational perspectives on addressing

challenges that arose from the large scale of complex, networked data. Further, we

elaborate on future directions of big network analytics that can build and improve

upon them. The overview of this thesis and its future directions is presented in

Figure 8.1.

8.1 Summary of Contributions

We aim to understand and model the principles that underpin our highly con-

nected world, from individuals, to groups, to societies. We achieve this by studying

a collection of more than one hundred large-scale networks in a wide range of do-

mains, including human communication, online social media, scientific collaboration

and citation, the Web, and so on. Our work provides novel insights into the inter-

play of demographics and diversity with network structures, and we leverage that

understanding to develop computational models to predict network phenomena.

In particular, the focus of this thesis lies in two components of big network an-

alytics: demographics and diversity. Work in each component is proceeded with

a combination of empirical discoveries and measurements from big networks, com-

putational modeling and learning of network problems, and large-scale predictive

experiments and applications.
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Big Network Data: 120 Large-Scale Social & Information Networks
♣ Mobile network of 7+ million users & 1+ billion communications
♣ Friendster network of 60+ million users & 1.8 billion friendships
♣ AMiner heterogeneous academic collaboration & citation networks 

Demographics

Diversity

Dynamics (time)

Location (space)

Language (information)

Privacy (society)

Knowledge Discovery
Social & Network Sciences

Computational Models
Machine Learning

Predictive Applications
Data Science

Dynamics (time)

Location (space)

Language (information)

Privacy (society)

Ising Model Deep “Networks”Graph Theory

Big Network Analytics and Visualization System

Social Theory

Figure 8.1. The overview of the thesis and future directions. Shading blocks
indicate future directions.

In the first part of this thesis, we study both micro- and macro-level network

structures that are coupled with user demographics, and provide predictive models

of user profiles from networks. First, we discover the evolving patterns of human

social strategies, that is, the active expansion of social connections with males and

females alike before 35 years of age, and the selective interactions with small, closed,

and same-gender social circles after 35. As a consequence, we also find the systematic

variations in age-specific small world phenomenon—young people live in the “smallest

world” and the most elderly live in the “least small world.” Finally, we present factor

graph-based computational models that can naturally incorporate structural network

features for user demographic prediction. Our extensive experiments demonstrate the

predictability of users’ gender and age from human communication networks.
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In the second part, we investigate network diversity along three dimensions. First,

we demonstrate that the structural diversity of the common neighborhood has a sig-

nificantly different impact on link existence across various networks, leading to the

identification of several distinct network superfamilies not discoverable by conven-

tional methods. Further, we find that the topic diversity of a research publication

is of surprisingly little relevance to the growth of its authors’ scientific impact in

academic networks, and, by contrast, that the authors’ authority on the publication

topic is crucial to impact growth. Finally, we present neural network-based computa-

tional models to learn unsupervised latent representations for diverse types of nodes

in heterogeneous information networks, advancing conventional heterogeneous net-

work mining and learning tasks, such as node classification, clustering, and similarity

search.

8.2 Future Directions

With the increasing availability of big network data that are coupled with user

behavior along many dimensions, including time, space, information, and society,

there are many exciting future directions to explore, such as network dynamics, lo-

cation based networks, language usage, and privacy. Accordingly, research problems

and solutions derived from these network data should be applicable to real-world

tasks. More importantly, it will be crucial to advance this field from theoretical and

computing perspectives, including the (re)examination and development of network

theories and computational models in the context of big networks.

Network dynamics. Networks are commonly associated with temporal informa-

tion. When structures meet with time, it is straightforward to ask how networks

evolve over time [121]. For example, Chapter 2 tells us that young females and males

have a strong tendency to connect and interact with each other, leading to the fol-

lowing interesting questions: How do their social networking behaviors vary across
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different hours of a day, different days of a week, different seasons of a year, and

so on? Consequently, how do network structures and properties change over time?

Answers to these questions will provide us with a richer understanding of human

networking behavior.

Networks and language. Although information usually propagates through

social networks in the form of natural language, we have limited knowledge about

the influence that language has on information diffusion over networks, as well as

on the formation and maintenance of social relationships. It would be interesting to

characterize the ways in which natural language shapes networks and, reversely, how

network structures influence language usage.

Graph and social theories. We studied networks, with a focus on social and

information networks, which requires domain knowledge from social science, mathe-

matical formulation from graph theory and physics, and computational perspectives

from data mining and machine learning. Graph theory provides network science with

theoretical foundations, while social theory abstracts empirical observations into prin-

ciples. It is, as always, vital to supply network analysis and mining with a continuous

development of graph and social theories. In particular, we are interested in the in-

teraction area produced at the intersection of graphical and Ising models for future

directions.

Deep “network” models. Deep learning models can learn latent representations

that capture the internal relations from rich, complex data of various modalities,

such as image, audio, and language. As a kind of complex data that encodes the

chaos, order, and dynamics of human interactions, social and information networks

are similarly rich and complex, and may thus also be particularly amenable to deep

learning. It would be exciting to study how deep learning techniques can help and

potentially shape network science.
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Big network computation and visualization systems. This thesis focuses

on identifying and addressing problems in big networks, wherein computational chal-

lenges naturally arise. Currently, there exist several big graph mining platforms, such

as SNAP, GraphX, Giraph, GraphChi, etc. Network science would significantly bene-

fit from advances in the computational paradigm, system design and implementation,

and graph visualization.

Finally, when looking back to the scientific discovery process in nature, we know

that as early as 1808, people started to characterize the existence of atoms [37],

which are “the smallest constituent unit of ordinary matter that has the proper-

ties of a chemical element [139].” It was nearly one century later, in 1902, when

Gilbert Newton Lewis further discovered the covalent bond between atoms, provid-

ing an explanation to the phenomenon that matter (e.g., graphite, diamond, fullerene,

nanotube, and graphene) composed of the same atoms or elements (carbon atoms)

displays markedly different properties. These remarkable differences arise from the

different ways in which these atoms are organized by covalent bonds (interactions).

Since 1860s, during which Dmitri Mendeleev envisioned the ordered arrangement of

all elements into a periodic table [142], we have further realized that the boundless

universe is formed by the combinations of around one hundred elements that hold

different attributes and traits.

Throughout the course of this thesis, we have been asking an analogous question:

“Can society be characterized as a network of ‘social atoms’, and is it organized

under some obvious, yet unknown, mechanisms?” This thesis begins to address these

questions by studying the various ways that diverse individuals are embedded in and

interact within social and information networks. For the long-term vision, we aim

to further explore and discover the underlying organizing principles that drive the

formation and evolution of modern society.
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179. J. Saramäki and E. M. Egido. From seconds to months: multi-scale dynamics
of mobile telephone calls. CoRR, abs/1504.01479, 2015. URL http://arxiv.

org/abs/1504.01479.

180. M. Seshadri, S. Machiraju, A. Sridharan, J. Bolot, C. Faloutsos, and J. Leskovec.
Mobile call graphs: beyond power-law and lognormal distributions. In Proceed-
ings of ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ’08), pages 596–604. ACM, 2008.

181. H. Shen, D. Wang, C. Song, and A.-L. Barabási. Modeling and predicting
popularity dynamics via reinforced poisson processes. In AAAI’14, pages 291–
297, 2014.

182. H.-W. Shen and A.-L. Barabási. Collective credit allocation in science. Pro-
ceedings of the National Academy of Sciences (PNAS), 111(34):12325–12330,
2014.

183. X. Shi, L. A. Adamic, and M. J. Strauss. Networks of strong ties. Physica A:
Statistical Mechanics and its Applications, 378(1):33–47, 2007.

184. X. Shi, L. A. Adamic, B. L. Tseng, and G. S. Clarkson. The impact of boundary
spanning scholarly publications and patents. PLoS ONE, 4(8):e6547, 08 2009.

245

http://arxiv.org/abs/1411.2738
http://networkrepository.com
http://arxiv.org/abs/1504.01479
http://arxiv.org/abs/1504.01479


185. X. Shi, B. Tseng, and L. Adamic. Information diffusion in computer science
citation networks. In International AAAI Conference on Web and Social Media
(ICWSM ’09), 2009.

186. X. Shi, J. Leskovec, and D. A. McFarland. Citing for high impact. In Proceedings
of the 10th annual joint conference on Digital libraries (JCDL ’10), pages 49–58.
ACM, 2010.

187. B.-E. Shie, S. Y. Philip, and V. S. Tseng. Mining interesting user behavior
patterns in mobile commerce environments. Applied intelligence, 38(3):418–435,
2013.

188. R. Shields. Cultural topology: The seven bridges of königsburg, 1736. Theory,
Culture & Society, 29(4-5):43–57, 2012.

189. E. J. Smith, C. S. Marcum, A. Boessen, Z. W. Almquist, J. R. Hipp, N. N. Nagle,
and C. T. Butts. The relationship of age to personal network size, relational
multiplexity, and proximity to alters in the western united states. The Journals
of Gerontology Series B: Psychological Sciences and Social Sciences, 70(1):91–
99, 2015.

190. Z. Smoreda and C. Licoppe. Gender-Specific Use of the Domestic Telephone.
Social Psychology Quarterly, 63(3):238–252, 2000.

191. R. Sosic and J. Leskovec. Large scale network analytics with snap. In Proceed-
ings of International Conference on World Wide Web (WWW ’15 Companion),
pages 1537–1538. ACM, 2015.

192. B. Spencer. Mobile users can’t leave their phone
alone for six minutes and check it up to 150 times a
day. http://www.dailymail.co.uk/news/article-2276752/

Mobile-users-leave-phone-minutes-check-150-times-day.html, 2013.

193. R. C. Sprinthall. Basic statistical analysis. 2011.

194. A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, J. E. Larsen, and
S. Lehmann. Measuring large-scale social networks with high resolution. PLoS
One, 9(4):e95978, 2014.

195. M. Strathern. Improving ratings: audit in the British university system. Euro-
pean Review, 5(03):305–321, 1997.

196. Y. Sun and J. Han. Mining Heterogeneous Information Networks: Principles
and Methodologies. Morgan & Claypool Publishers, 2012.

197. Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous infor-
mation networks with star network schema. In Proceedings of ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD ’09),
pages 797–806. ACM, 2009.

246

http://www.dailymail.co.uk/news/article-2276752/Mobile-users-leave-phone-minutes-check-150-times-day.html
http://www.dailymail.co.uk/news/article-2276752/Mobile-users-leave-phone-minutes-check-150-times-day.html


198. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. In Proceedings of the
VLDB Endowment (VLDB ’11), pages 992–1003, 2011.

199. Y. Sun, J. Han, C. C. Aggarwal, and N. V. Chawla. When will it happen?:
Relationship prediction in heterogeneous information networks. In Proceedings
of ACM International Conference on Web search and Data Mining (WSDM
’12), pages 663–672. ACM, 2012.

200. Y. Sun, B. Norick, J. Han, X. Yan, P. S. Yu, and X. Yu. Integrating meta-path
selection with user-guided object clustering in heterogeneous information net-
works. In Proceedings of ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ’12), pages 1348–1356. ACM, 2012.

201. M. Szell and S. Thurner. How women organize social networks different from
men. Scientific Reports, 3, July 2013.

202. J. Tang and J. Zhang. A discriminative approach to topic-based citation recom-
mendation. Advances in Knowledge Discovery and Data Mining, pages 572–579,
2009.

203. J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction
and mining of academic social networks. In Proceedings of ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD ’08),
pages 990–998, 2008.

204. J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-
scale networks. In Proceedings of ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’09), pages 807–816, 2009.

205. J. Tang, S. Wu, and J. Sun. Confluence: Conformity influence in large social
networks. In Proceedings of ACM SIGKDD international conference on Knowl-
edge discovery and data mining (KDD ’13), pages 347–355. ACM, 2013.

206. J. Tang, M. Qu, and Q. Mei. PTE: Predictive text embedding through large-
scale heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’15),
pages 1165–1174. ACM, 2015. ISBN 978-1-4503-3664-2.

207. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale
information network embedding. In Proceedings of International Conference on
World Wide Web (WWW ’15). ACM, 2015.

208. J. Tang, T. Lou, J. Kleinberg, and S. Wu. Transfer learning to infer social
ties across heterogeneous networks. ACM Transactions on Information Systems
(TOIS), 34(2):7:1–7:43, Apr. 2016.

209. L. Tang and H. Liu. Leveraging social media networks for classification. Data
Mining and Knowledge Discovery (DMKD), 23(3):447–478, 2011.

247



210. L. Tang and H. Liu. Relational learning via latent social dimensions. In Pro-
ceedings of ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD ’09), pages 817–826, 2009.

211. Z. Toroczkai and K. E. Bassler. Network dynamics: Jamming is limited in
scale-free systems. Nature, 428(6984):716–716, 2004.

212. J. Travers and S. Milgram. An experimental study of the small world problem.
Sociometry, 32:425–443, 1969.

213. W. T. Tutte. The factorization of linear graphs. Journal of the London Mathe-
matical Society, 1(2):107–111, 1947.

214. W. T. Tutte. The factors of graphs. Canad. J. Math, 4(3):314–328, 1952.

215. J. Ugander. Computational Perspectives on Large-scale Social Networks. PhD
thesis, Cornell University, 2014.

216. J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity
in social contagion. Proceedings of the National Academy of Sciences (PNAS),
109(16):5962–5966, 2012.

217. J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping
the empirical and extremal geography of large graph collections. In Proceedings
of International Conference on World Wide Web (WWW ’13), pages 1307–1318,
2013.

218. J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM,
23(1):31–42, 1976.

219. B. Uzzi. Social structure and competition in interfirm networks: The paradox
of embeddedness. Administrative Science Quarterly, pages 35–67, 1997.

220. B. Uzzi, S. Mukherjee, M. Stringer, and B. Jones. Atypical combinations and
scientific impact. Science, 342(6157):468–472, 2013.

221. D. Vu, A. Asuncion, D. Hunter, and P. Smyth. Dynamic egocentric models
for citation networks. In Proceedings of International Conference on Machine
Learning (ICML ’11), pages 857–864, 2011.

222. C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo. Mining
advisor-advisee relationships from research publication networks. In Proceedings
of ACM SIGKDD international conference on Knowledge discovery and data
mining (KDD ’10), pages 203–212, 2010.

223. D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L. Barabási. Human
mobility, social ties, and link prediction. In Proceedings of ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD ’11),
pages 1100–1108. ACM, 2011.

248



224. D. Wang, C. Song, and A.-L. Barabási. Quantifying long-term scientific impact.
Science, 342(6154):127–132, 2013.

225. J. H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal
of the American Statistical Association, 58(301):236–244, 1963.

226. D. J. Watts. Computational social science: Exciting progress and future direc-
tions. The Bridge on Frontiers of Engineering, 43(4):5–10, 2013.

227. D. J. Watts. Small worlds: the dynamics of networks between order and ran-
domness. Princeton University Press, 1999.

228. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, pages 440–442, Jun 1998.

229. B. Wellman, R. Y.-l. Wong, D. Tindall, and N. Nazer. A decade of network
change: Turnover, persistence and stability in personal communities. Social
Networks, 19(1):27–50, 1997.

230. Wikipedia. Postpaid mobile phone, accessed on jan. 13th, 2017. https://en.

wikipedia.org/wiki/Postpaid_mobile_phone, .

231. Wikipedia. Prepay mobile phone, accessed on jan. 13th, 2017. https://en.

wikipedia.org/wiki/Prepay_mobile_phone, .

232. R. Xiang, J. Neville, and M. Rogati. Modeling relationship strength in online
social networks. In Proceedings of International Conference on World Wide Web
(WWW ’10), pages 981–990, 2010.

233. R. Yan, J. Tang, X. Liu, D. Shan, and X. Li. Citation count prediction: Learn-
ing to estimate future citations for literature. In Proceedings of ACM inter-
national conference on Information and knowledge management (CIKM ’11),
pages 1247–1252. ACM, 2011.

234. R. Yan, C. Huang, J. Tang, Y. Zhang, and X. Li. To better stand on the
shoulder of giants. In Proceedings of annual joint conference on Digital libraries
(JCDL ’12), pages 51–60. ACM, 2012.

235. S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin. Graph embedding
and extensions: A general framework for dimensionality reduction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 29(1), 2007.

236. J. Ying, Y.-J. Chang, C.-M. Huang, and V. S. Tseng. Demographic prediction
based on user’s mobile behaviors. In Nokia MDC ’12, 2012.

237. X. Yu, Q. Gu, M. Zhou, and J. Han. Citation prediction in heterogeneous bib-
liographic networks. In Proceedings of the 2012 SIAM International Conference
on Data Mining (SDM ’12), pages 1119–1130, 2012.

249

https://en.wikipedia.org/wiki/Postpaid_mobile_phone
https://en.wikipedia.org/wiki/Postpaid_mobile_phone
https://en.wikipedia.org/wiki/Prepay_mobile_phone
https://en.wikipedia.org/wiki/Prepay_mobile_phone


238. R. Zafarani and H. Liu. Social computing data repository at ASU, 2009. URL
http://socialcomputing.asu.edu.

239. J. Zhang, J. Tang, and J. Li. Expert finding in a social network. In Proceedings
of International Conference on Database Systems for Advanced Applications
(DASFAA ’07), pages 1066–1069, 2007.

240. J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li. Panther: Fast top-k
similarity search on large networks. In Proceedings of ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (KDD ’15), pages
1445–1454. ACM, 2015.

241. Y. Zhao, G. Wang, P. S. Yu, S. Liu, and S. Zhang. Inferring social roles and
statuses in social networks. In Proceedings of ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’13), pages 695–
703, 2013.

242. Y. Zheng. Trajectory data mining: an overview. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 6(3):29, 2015.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated

by Megan Patnott.

250

http://socialcomputing.asu.edu

	Abstract
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	1.1 Contributions and Organization

	I DEMOGRAPHICS IN BIG NETWORKS
	CHAPTER 2: GENDER & AGE IN NETWORKS
	2.1 Overview
	2.2 Introduction
	2.3 Mobile Network Data with Demographics
	2.4 Social Strategies in Mobile Communication
	2.4.1 Social Strategies on Ego Networks
	2.4.2 Social Strategies on Interpersonal Ties
	2.4.3 Social Strategies on Triads

	2.5 The Null Model in Attributed Networks
	2.6 Conclusion

	CHAPTER 3: AGE-SPECIFIC SMALL WORLDS
	3.1 Overview
	3.2 Introduction
	3.2.1 Age, Social Networks, and the Small World
	3.2.2 Implications for Age-Specific Small Worlds

	3.3 Age-Specific Small Worlds
	3.3.1 The Young Live in a Smaller World
	3.3.2 The Young Are Close to the Young
	3.3.3 Null Gender-Specific Small Worlds
	3.3.4 Evidence for Proposed Connectivity Mechanisms

	3.4 Materials and Methods
	3.4.1 Mobile Phone Networks
	3.4.2 Shortest Paths in Big Networks

	3.5 Discussion and Conclusion

	CHAPTER 4: DEMOGRAPHIC PREDICTION IN NETWORKS
	4.1 Overview
	4.2 Introduction
	4.3 Demographic Prediction Problems
	4.4 The WhoAmI Framework
	4.4.1 Multiple Label Factor Graph
	4.4.2 Feature Definition
	4.4.3 Learning and Inference
	4.4.4 Distributed Learning
	4.4.5 Coupled Network Learning

	4.5 Experiments
	4.5.1 Experiment Setup
	4.5.2 Experiment Results
	4.5.3 Coupled Network Demographic Prediction

	4.6 Related Work
	4.7 Conclusion


	II DIVERSITY IN BIG NETWORKS
	CHAPTER 5: STRUCTURAL DIVERSITY AND EMBEDDEDNESS
	5.1 Overview
	5.2 Introduction
	5.3 Big Network Data
	5.4 Common Neighborhood Signature (CNS)
	5.5 CNS for Network Superfamilies
	5.5.1 Network Superfamilies
	5.5.2 Network Property

	5.6 Diversity and Embeddedness in Link Existence
	5.6.1 Link Existence Correlation
	5.6.2 Violation of Homophily
	5.6.3 Link Prediction

	5.7 Related Work
	5.8 Conclusion

	CHAPTER 6: TOPIC DIVERSITY AND AUTHORITY
	6.1 Overview
	6.2 Introduction
	6.3 AMiner Academic Data
	6.4 Problem Definition
	6.5 Scientific Impact Factors
	6.5.1 Factors That Drive One's h-index to Increase
	6.5.2 Factors That Drive Papers to Increase h-index
	6.5.3 Existing Factors for Previous Papers
	6.5.4 Summary

	6.6 Scientific Impact Prediction
	6.6.1 Experimental Setup
	6.6.2 Predicting Future h-indices
	6.6.3 Predicting Whether Papers Increase h-indices
	6.6.4 Predictability of Different Papers
	6.6.5 Factor Contribution Analysis
	6.6.6 Prototype h-index Prediction Tool

	6.7 Related Work
	6.8 Conclusion

	CHAPTER 7: HETEROGENEOUS NETWORK EMBEDDING LEARNING
	7.1 Overview
	7.2 Introduction
	7.3 Problem Definition
	7.4 The metapath2vec Framework
	7.4.1 Skip-Gram in Homogeneous Network Embedding
	7.4.2 Heterogeneous Network Embedding: metapath2vec
	7.4.3 The metapath2vec++ Model

	7.5 Experiments
	7.5.1 Experimental Setup
	7.5.2 Multi-Class Classification
	7.5.3 Node Clustering
	7.5.4 Case Study: Similarity Search
	7.5.5 Case Study: Visualization
	7.5.6 Scalability

	7.6 Related Work
	7.7 Conclusion


	CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS
	8.1 Summary of Contributions
	8.2 Future Directions


	BIBLIOGRAPHY

