
Mask and Reason: Pre-Training Knowledge Graph Transformers
for Complex LogicalQueries

Xiao Liu∗
Tsinghua University

liuxiao21@mails.tsinghua.edu.cn

Shiyu Zhao∗
Tsinghua University

sy-zhao19@mails.tsinghua.edu.cn

Kai Su∗
Tsinghua University

suk19@mails.tsinghua.edu.cn

Yukuo Cen
Tsinghua University

cyk20@mails.tsinghua.edu.cn

Jiezhong Qiu
Tsinghua University

jiezhongqiu@outlook.com

Mengdi Zhang
Meituan-Dianping Group

zhangmengdi02@meituan.com

Wei Wu
Meituan-Dianping Group
wuwei30@meituan.com

Yuxiao Dong†
Tsinghua University

yuxiaod@tsinghua.edu.cn

Jie Tang†
Tsinghua University

jietang@tsinghua.edu.cn

Abstract
Knowledge graph (KG) embeddings have been a mainstream ap-
proach for reasoning over incomplete KGs. However, limited by
their inherently shallow and static architectures, they can hardly
deal with the rising focus on complex logical queries, which com-
prise logical operators, imputed edges, multiple source entities,
and unknown intermediate entities. In this work, we present the
Knowledge Graph Transformer (kgTransformer)1 with masked
pre-training and fine-tuning strategies. We design a KG triple trans-
formation method to enable Transformer to handle KGs, which is
further strengthened by the Mixture-of-Experts (MoE) sparse acti-
vation. We then formulate the complex logical queries as masked
prediction and introduce a two-stage masked pre-training strategy
to improve transferability and generalizability. Extensive experi-
ments on two benchmarks demonstrate that kgTransformer can
consistently outperform both KG embedding-based baselines and
advanced encoders on nine in-domain and out-of-domain reasoning
tasks. Additionally, kgTransformer can reason with explainability
via providing the full reasoning paths to interpret given answers.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning; Unsupervised learning; Learning latent rep-
resentations; • Information systems→ Data mining.

Keywords
Knowledge Graph; Pre-Training; Graph Neural Networks

∗The authors contributed equally to this research.
†Jie Tang and Yuxiao Dong are the corresponding authors.
1The code is available at https://github.com/THUDM/kgTransformer

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539472

ACM Reference Format:
Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang,
Wei Wu, Yuxiao Dong, and Jie Tang. 2022. Mask and Reason: Pre-Training
Knowledge Graph Transformers for Complex Logical Queries. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539472

1 INTRODUCTION
Knowledge graphs (KGs) store and organize human knowledge
about the factual world, such as the human-curated Freebase [2]
and Wikidata [40] as well as the semi-automatic constructed ones—
NELL [4] and Knowledge Vault [8]. Over the course of KGs’ de-
velopment, representation learning for querying KGs is one of the
fundamental problems. Its main challenge lies in the incomplete
knowledge and inefficient queries. Web-scale KGs are known to
suffer from missing links [41], and the specialized querying tools
such as SPARQL cannot deal well with it.

Knowledge graph embeddings (KGEs), which aim at embedding
entities and relations into low-dimensional continuous vectors,
have thrived in the last decade [3, 36]. Specifically, KGEs have
found wide adoptions in the simple KG completion problem (ℎ, 𝑟, ?),
which features a single head entity ℎ, a relation 𝑟 and the missing
tail entity. However, real-world queries can be more complicated
with imputed edges, multiple source entities, Existential Positive
First-Order (EPFO) logic, and unknown intermediates, namely, the
complex logical queries.

Figure 1 illustrates a decomposed query graph for the complex
logical query “What musical instrument did Minnesota-born Nobel
Prize winner play?”. The query composes two source entities (“Min-
nesota” & “Nobel Prize”, denoted as “ ”), First-Order logic operator
conjunction (∧), unknown intermediate entities (“people that were
born inMinnesota and won Nobel Prize”, denoted as “ ”), unknown
target entities (“musical instruments they may play”, denoted as
“ ”), and potential missing edges. A major challenge of answering
such query is the exponential complexity along its growing combi-
nations of hops and logical operators. Additionally, the rich context
information surrounding multiple entities and relations in a single
query should also be taken into account during reasoning.

https://github.com/THUDM/kgTransformer
https://doi.org/10.1145/3534678.3539472
https://doi.org/10.1145/3534678.3539472

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Liu et al.

Dylan

guitarist

piano

Duluth

Minn.

Nobel Prize

Play

IsA

Win

BornIsIn

Minn.

Nobel
Prize

Born

Win

guitar

piano
Calvin

Dylan
Lewis

Prince

Einstein

Play

Minn.

Nobel
Prize

Born

Win

[MASK] [MASK]

Play

KGE

GNN

Pre-trained KGTransformer

dist(A, guitar)=0.08
dist(A, piano)=0.45

……

P(guitar)=0.4
P(piano)=0.2

……

Forms of Knowledge Reasoning Answers

Masked Prediction

Static KG Embeddings Geometric Operation Compute Distance

Decode Probability

EPFO query:

Natural query: What musical instruments did Minnesota-born Nobel Prize winners play?

Q[A] ,?A : 9V s.t.Born(Minnesota, V) ^ Win(NobelPrize, V) ^ Play(V, A)
<latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="alavem12HjKjJeTNlkUn7Znug8s=">AAADOnicjVJBb9MwFH4JA8ZWoCDBZReLCamTpijhAuIChQsXUCet6aSmmhzX66w5drAdtFJV4t/xExB/AMGBG+K8Zy+TBhUajpJ8/r73Pb9nu6ylsC5Nv0bxtbXrN26u39rY7Ny+c7d7r5Nb3RjGh0xLbQ5KarkUig+dcJIf1IbTqpR8VJ689vroAzdWaLXv5jWfVHSmxJFg1CF12P1UVNQdMyoXe8txf0IKZwRVM8nfkxd98pwU/BSLsCQnNnEJyvzULV5po5a9t0IpbrWjuyTfIYWkatrqI4HyO11ySQZGfOQrAQNJ58tevkv6O4fd7TRJwyCrIGvBNrRjoLtfoIApaGDQQAUcFDjEEihYfMaQQQo1chNYIGcQiaBzWMIGehuM4hhBkT3B7wxn45ZVOPc5bXAzXEXia9BJ4DF6NMYZxH41EvQmZPbsv3IvQk5f2xz/ZZurQtbBMbJX+S4i/9fne3FwBM9CDwJ7qgPju2Ntlibsiq+cXOrKYYYaOY+nqBvELDgv9pkEjw29+72lQf8eIj3r56yNbeCHrxIPOPv7OFdB/iTJ0iTbS2EdtuAR9PAYn8JLeAMDGGLKb1EnehA9jD/HP+Nf51chjto7cR/+GPHvM8yzvEA=</latexit><latexit sha1_base64="alavem12HjKjJeTNlkUn7Znug8s=">AAADOnicjVJBb9MwFH4JA8ZWoCDBZReLCamTpijhAuIChQsXUCet6aSmmhzX66w5drAdtFJV4t/xExB/AMGBG+K8Zy+TBhUajpJ8/r73Pb9nu6ylsC5Nv0bxtbXrN26u39rY7Ny+c7d7r5Nb3RjGh0xLbQ5KarkUig+dcJIf1IbTqpR8VJ689vroAzdWaLXv5jWfVHSmxJFg1CF12P1UVNQdMyoXe8txf0IKZwRVM8nfkxd98pwU/BSLsCQnNnEJyvzULV5po5a9t0IpbrWjuyTfIYWkatrqI4HyO11ySQZGfOQrAQNJ58tevkv6O4fd7TRJwyCrIGvBNrRjoLtfoIApaGDQQAUcFDjEEihYfMaQQQo1chNYIGcQiaBzWMIGehuM4hhBkT3B7wxn45ZVOPc5bXAzXEXia9BJ4DF6NMYZxH41EvQmZPbsv3IvQk5f2xz/ZZurQtbBMbJX+S4i/9fne3FwBM9CDwJ7qgPju2Ntlibsiq+cXOrKYYYaOY+nqBvELDgv9pkEjw29+72lQf8eIj3r56yNbeCHrxIPOPv7OFdB/iTJ0iTbS2EdtuAR9PAYn8JLeAMDGGLKb1EnehA9jD/HP+Nf51chjto7cR/+GPHvM8yzvEA=</latexit><latexit sha1_base64="tsD0cY9zbnHj/02stSPM552wjaY=">AAADRXicjVFNb9QwEJ2Er1IKLCC4cLFYIW2lKkq4gLi0Wy5cQFuJzVbarCon626tOnawnarLaiX+HT8B8QcQHLihXsvYuBKwQuAoyfN788YznrIR3Ng0/RTFly5fuXpt7fr6jY2bt2537tzNjWp1xYaVEkrvl9QwwSUbWm4F2280o3Up2Kg8fuH00QnThiv5xs4bNqnpTPJDXlGL1EHnfVFTe1RRsdhbjvsTUljNqZwJ9pZs98lzUrBTLMKQnJjEJiizU7vYVVoue6+4lMwoS7dIvkkKQeU06COO8mtVMkEGmr9jKwEDQefLXr5F+psHnW6apH6RVZAF0IWwBqrzEQqYgoIKWqiBgQSLWAAFg88YMkihQW4CC+Q0Iu51BktYR2+LUQwjKLLH+J3hbhxYiXuX03h3hacIfDU6CTxGj8I4jdidRrze+syO/Vvuhc/papvjvwy5amQtHCH7L99F5P/6XC8WDuGZ74FjT41nXHdVyNL6W3GVk1+6spihQc7hKeoaceWdF/dMvMf43t3dUq9/8ZGOdfsqxLbw1VWJA87+HOcqyJ8kWZpke2l3ZzeMeg0ewiPo4Tyfwg68hAEMMffnaCO6Hz2IP8Tf4u/x2c/QOAqee/Dbis9/AAXdve0=</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit><latexit sha1_base64="qfp7XpDXceE8hKbRgHdI87CI75Q=">AAADRXicjVFdaxQxFL0zfrTWaldFX3wJLsIWyjAjguKL3frii7IFd7aws5RMNt2GZpJpkpGuy4L/zp8g/gHRB9/EV72JU1AX0Qwzc3LOPTf35pa1FNal6YcovnDx0uW19SsbVzevXd/q3LiZW90YxodMS20OSmq5FIoPnXCSH9SG06qUfFSePPP66DU3Vmj1ys1rPqnoTIkjwahD6rDztqioO2ZULvaX4/6EFM4IqmaSn5KnffKEFPwMi7AkJzZxCcr8zC32tFHL3guhFLfa0R2Sb5NCUjVt9ZFA+aUuuSQDI97wlYCBpPNlL98h/e3DTjdN0rDIKsha0IV2DXTnPRQwBQ0MGqiAgwKHWAIFi88YMkihRm4CC+QMIhF0DkvYQG+DURwjKLIn+J3hbtyyCvc+pw1uhqdIfA06CdxHj8Y4g9ifRoLehMye/VvuRcjpa5vjv2xzVcg6OEb2X77zyP/1+V4cHMHj0IPAnurA+O5Ym6UJt+IrJ7905TBDjZzHU9QNYhac5/dMgseG3v3d0qB/CpGe9XvWxjbw2VeJA87+HOcqyB8kWZpk+w+7u3vtqNfhLtyDHs7zEezCcxjAEHN/jDaj29Gd+F38Jf4af/sZGket5xb8tuLvPwAHHb3x</latexit>

Figure 1: EPFO query reasoning: KGE-based reasoners vs.
Pre-trained kgTransformer. The masked prediction training can
endow GNNs with natural capability to answer EPFO queries.

Consequently, such query goes beyond the capability of existing
KGE-based approaches. First, most KGEs’ architectures are shallow
and use static vectors, limiting their expressiveness and capacity to
capture massive patterns. Second, the training objective of recover-
ing first-order missing links does not comply with the high-order
graph nature of complex logical queries, and hence KGEs cannot
handle complex queries without training auxiliary logical functions
on sampled supervised datasets [1, 12, 28]. In addition, existing
KG benchmark datasets [28, 35, 43] usually consist of limited task-
specific types of queries, practically prohibiting KGE methods from
generalizing well to queries with out-of-domain types.

Contributions. In this work, we propose to learn deep knowl-
edge representations for answering complex queries from these
two perspectives: architecture and training objective. At the ar-
chitecture level, the goal is to design a deep model specified for
KGs such that the complex logical queries can be handled. At the
training level, the model is expected to learn general instead of
task-specific knowledge from KGs and is thus enabled with strong
generalizability for out-of-domain queries. To this end, we present
kgTransformer—a Transformer-based GNN architecture—with self-
supervised pre-training strategies for handling complex logical
queries.

kgTransformer. We develop kgTransformer to encode KGs.
Specifically, to represent relations in KGs, we propose the Triple
Transformation strategy that turns relations to relation-nodes and
thus transforms a KG into a directed graph without edge attributes.
To further enlarge the model capacity with low computation cost,
we adopt the Mixture-of-Experts strategy to leverage the sparse
activation nature of Transformer’s feed-forward layers. Altogether,
these strategies enable the kgTransformer architecture with high-
capacity and computational efficiency, making it capable of answer-
ing the EPFO queries on KGs.

Masked Pre-Training. To further improve kgTransformer’s
generalizability, we introduce a masked pre-training framework
to train it. We formulate complex logical query answering as a
masked prediction problem. During pre-training, we randomly sam-
ple subgraphs from KGs and mask random entities for prediction. It

includes two sequential stages of dense initialization, which targets
at enriching the model by training on dense and arbitrary-shaped
contexts, and sparse refinement, which is trained on sparse and
clean meta-graphs to mitigate the gap between pre-training and
downstream queries.

Extensive experiments on two widely-used KG benchmarks,
i.e., FB15k-237 and NELL995, demonstrate kgTransformer’s perfor-
mance advantages over state-of-the-art—particularly KGE-based—
approaches on nine in-domain and out-of-domain downstream
reasoning challenges. Additionally, the case studies suggest that
masked pre-training can endow kgTransformer’s reasoning with
explainability and interpretability via providing predictions over
unknown intermediates.

2 The EPFO Logical Queries
We introduce the Existential Positive First-Order (EPFO) logical
queries on KGs [28] and identify the unique challenges.

EPFO. Let G = (E,R) denote a KG, where 𝑒 ∈ E denotes an
entity and 𝑟 ∈ R is a binary predicate (or relation) 𝑟 : E × E →
{True, False} that indicates whether a relation holds for a pair of
entities. Given the First-Order logical existential (∃) and conjunctive
(∧) operations, the conjunctive queries are defined as:

Q[𝐴] ≜?𝐴 : ∃𝐸1, . . . , 𝐸𝑚 .𝑒1 ∧ . . . ∧ 𝑒𝑛
where 𝑒𝑖 = 𝑟 (𝑐, 𝐸), with 𝐸 ∈ {𝐴, 𝐸1, . . . , 𝐸𝑚 }, 𝑐 ∈ E, 𝑟 ∈ R

or 𝑒𝑖 = 𝑟 (𝐸, 𝐸′), with 𝐸, 𝐸′ ∈ {𝐴, 𝐸1, . . . , 𝐸𝑚 }, 𝐸 ≠ 𝐸′, 𝑟 ∈ R .
(1)

where 𝐴 refers to the (unknown) target entity of the query,
𝐸1, . . . , 𝐸𝑚 refer to existentially quantified bound variables (i.e.,
unknown intermediate entity sets), and 𝑐 refers to the source entity.
Given the query Q, the goal is to find its target entity set A ⊆ E
that satisfies 𝑎 ∈ A iff Q[𝑎] is true.

Besides the conjunctive queries, EPFO also covers the disjunc-
tive (∨) queries. A rule-of-thumb practice is to transform an EPFO
query into the Disjunctive Normal Form [1, 6, 28]. In other words,
a disjunctive query can be decomposed into several conjunctive
queries, and a rule can be applied to synthesize conjunctive results
for disjunctive predictions.

Challenges. Compared to the KG completion task in which
the KGE-based methods are prevalent, the EPFO queries can be
multi-hop; their numerous combinations the test reasoner’s out-of-
domain generalizability. All these characteristics together pose the
following unique challenges to reasoners:

• Exponential complexity: The complexity of EPFO queries
grows exponentially as the hop increases [27], requiring high-
capacity and advancedmodels to handle them. KGE-based reason-
ers rely on embeddings and simple operators [19, 28] to reason
in a “left-to-right” autoregressive fashion. However, there are
evidences [1] showing that such models’ performance gradually
saturates as the embedding dimension grows to 1000. Addition-
ally, during reasoning, the first-encoded entities are unaware of
the later-encoded, ignoring the useful bidirectional interactions.

• Transfer and generalization: After training, an ideal reasoner
is expected to transfer and generalize to out-of-domain queries.
But existing EPFO reasoners [1, 20, 28] are directly trained on
a limited number of samples within a few query types (i.e., 1p,

Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

2p, 3p, 2i, and 3i in Figure 2 (b)) in a supervised manner, leaving
many entities and relations in original KGs untouched. Thus the
reasoners are prohibited from grasping knowledge of diverse
forms and larger contexts beyond those existing types can ex-
press, consequently harming the generalizability.

In summary, these challenges make EPFO queries different from
conventional KG completion, which only involves single-hop and
single-type queries. In this work, we explore how to effectively han-
dle EPFO queries with the pre-training and fine-tuning paradigm.

3 The KG Pre-Training Framework
In this section, we introduce kgTransformer—a Transformer-based
graph neural network (GNN)—for handling EPFO queries on KGs.
To endow kgTransformer with strong generalization, we design a
masked pre-training and fine-tuning framework. The overall KG
pre-training and reasoning framework is illustrated in Figure 2.

3.1 The kgTransformer Architecture
As discussed above, the relatively simple architecture of KGE-based
reasoners limits their expressiveness. To overcome this issue, we
propose a Transformer-based GNN architecture, kgTransformer,
with the Mixture-of-Expert strategy to scale up model parameters
while keeping its computational efficiency.

Transformer for KGs. Transformer [38], a neural architecture
originally proposed to handle sequences, has achieved early success
in the graph domain [18]. To apply transformers to KGs, there are
two questions to answer: 1) How to encode the node adjacency in
graph structures, and 2) how to model both entities and relations.

First, there have been well-trodden practices for encoding node
adjacency in graph transformers. For node and graph classifica-
tion, it is common to view graphs as sequences of tokens with
positional encoding, ignoring the adjacency matrices [45, 47]. For
link prediction, however, adjacency matrices can be crucial and
should be masked to self-attention for better performance [18]. As
EPFO reasoning is intrinsically a link prediction problem, we follow
HGT [18] to mask adjacency matrices to self-attention.

Second, how to incorporate both entities and relations into Trans-
former’s computation has thus far seldom studied. Here, we present
the Triple Transformation operation, denoted as function 𝐿(·), to
turn relations into relation-nodes and consequently transform KGs
into directed graphs without edge attributes.

For each directed triple (ℎ, 𝑟, 𝑡) in G with 𝑟 (ℎ, 𝑡) = True, we
create a node 𝑟ℎ𝑡 in 𝐿(G) (i.e., a relation-node) that connects to
both ℎ and 𝑟 . By mapping each relation edge in G to a relation-
node, the resultant graph becomes 𝐿(G) = (E ′,R ′) where E ′ =
E ∪ {𝑟ℎ𝑡 |𝑟 (ℎ, 𝑡) = True} and the unattributed edge set R ′ = {𝑟 :
𝑟 (ℎ, 𝑟ℎ𝑡) = 𝑟 (𝑟ℎ𝑡 , 𝑡) = True|𝑟 (ℎ, 𝑡) = True}. In practice, the compu-
tational cost of the triple transformation is low as the reasoning
graphs for EPFO queries are usually very small and sparse (~101
entities and relations).

Given the input embeddings x(0)𝑒 ∈ R𝑑 for 𝑒 ∈ E ′ with dimen-
sion 𝑑 , we add a special node-type embedding 𝑡I(𝑒∈E) ∈ R𝑑 to
distinguish whether it is an entity-node or a relation-node. In the
𝑘-th layer of kgTransformer, 𝑑ℎ = 𝑑/𝐻 and 𝐻 denotes the number

of attention heads, and the multi-head attention is computed as

Attn(𝑘)
𝑖

= softmax(𝑄⊺𝐾/
√︁
𝑑ℎ)𝑉 , (2)

where 𝑄 = x(𝑘−1)𝑒 W𝑄 and {𝐾,𝑉 } =
f
𝑛∈N(𝑒) x

(𝑘−1)
𝑛 {W𝐾 ,W𝑉 }.

HereW{𝑄,𝐾,𝑉 } ∈ R𝑑×𝑑ℎ ,
f
denotes concatenation, andN(𝑒) refers

to node 𝑒’s neighbor set.
Next, the feed-forward network FFN(𝑥) is applied to attention-

weighted outputs projected byW𝑂 ∈ R𝑑×𝑑 as

x(𝑘)𝑒 = FFN(
𝐻n

𝑖=1
Attn(𝑘)

𝑖
·W𝑂), FFN(x) = 𝜎 (xW1 + b1)W2 + b2

(3)
where W1 ∈ R𝑑×4𝑑 , W2 ∈ R4𝑑×𝑑 , and 𝜎 is the activation func-
tion (e.g., GeLU [14]). Note that FFN is critical for Transformers to
capture massive patterns and proved equivalent to the key-value
networks [11].

Different from 1) existing KGE-based reasoners with the “left-
to-right” reasoning order and 2) the sequence encoder-based
model [20] that can only reason on acyclic query graphs, kgTrans-
former designs an architecture to aggregate information from all
directions in each layer’s computation, making it more flexible
and capable of answering queries in arbitrary shapes. Figure 2 (a)
illustrates the kgTransformer architecture.

Mixture-of-Experts (MoE). Though kgTransformer’s architecture
allows it to capture complicated reasoning patterns, the number of
its parameters soars up quadratically with the embedding dimen-
sion 𝑑 , which is a common challenge faced by Transformers.

As mentioned earlier, Transformer’s FFN is known to be equiv-
alent to the key-value networks [11] where a key activates a few
values as responses. Given 𝑥 ∈ R𝑑 , FFN’s intermediate activation

𝜎 (xW1 + b1) = [x0, x1, ..., x𝑖 , ..., x𝑗 , ..., x4𝑑] = [0, 0, ..., x𝑖 , ..., x𝑗 , ..., 0]︸ ︷︷ ︸
Most of elements are 0

(4)
can be extremely sparse, where W1 ∈ R𝑑×4𝑑 . The level of sparsity
varies with tasks. For instance, a recent study [49] shows that
usually less than 5% of neurons are activated for each input in NLP.
In our preliminary experiments on EPFO queries (Cf. Figure 3), only
10%-20% neurons are activated for certain inputs (except the last
decoder layer).

Thus, we propose to leverage the sparsity of kgTransformer via
the Mixture-of-Experts (MoE) strategy [30, 32]. MoE first decom-
poses a large FFN into blockwise experts, and then utilizes a light
gating network to select experts to be involved in the computation.
For example, an FFN withW1 ∈ R𝑑×16𝑑 andW2 ∈ R16𝑑×𝑑 (4 times
larger than that in Equation 4) can be transformed into

FFN(x) = {FFN(𝑖)
Exp (x) = 𝜎 (xW

(𝑖)
1 + b1)W(𝑖)

2 + b2 | 𝑖 ∈ [1, 8], 𝑖 ∈ N}
(5)

where W(𝑖)
1 ∈ R𝑑×2𝑑 , W(𝑖)

2 ∈ R2𝑑×𝑑 . Each FFN(𝑖)
Exp is referred to

as an expert. Given a gating network, which is usually a trainable
matrix Wgate ∈ R𝑑×𝑁 with 𝑁 as the number of experts, we can
select the top-2 experts for computation [21] as

x(𝑘)𝑒 =
∑︁

(𝑖,𝑠) ∈𝑆
𝑠 · FFN(𝑖)

Exp (x
(𝑘−1)
𝑒) (6)

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Liu et al.

FFN Exp. 1

FFN Exp. 2

FFN Exp. 3

FFN Exp. N
……

 Gating Network

 Gating Network

Minn.

Nobel
Prize

[MASK]

Win

Born

FFN Exp. 1

FFN Exp. 2

FFN Exp. 3

FFN Exp. N
……

?

Minn.

Win

Born

Nobel
Prize

Multi-
Head

Attention

Residual Conn.

Triple Transform kgTransformer Layer ()

Residual Conn. Mixture-of-Experts (MoE)

Multi-
Head

Attention

⇥L<latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="G30nvnJkyKBlKcCymNnrqTxJgV4=">AAACtXicjVLLSgMxFD0dX7VWrWs3g0VwVTJudCnowmUF+4BaZCZNa+y8TDJCKf6AWz9O/AP9C2/iCGoRzTAzJ+fec5KbmyiPpTaMvVS8peWV1bXqem2jXtvc2m7UuzorFBcdnsWZ6kehFrFMRcdIE4t+rkSYRLHoRdNTG+/dC6Vlll6aWS6GSThJ5Vjy0BDVvm40WYu54S+CoARNlCNrPOMKI2TgKJBAIIUhHCOEpmeAAAw5cUPMiVOEpIsLPKBG2oKyBGWExE7pO6HZoGRTmltP7dScVonpVaT0sU+ajPIUYbua7+KFc7bsb95z52n3NqN/VHolxBrcEPuX7jPzvzpbi8EYx64GSTXljrHV8dKlcKdid+5/qcqQQ06cxSOKK8LcKT/P2Xca7Wq3Zxu6+KvLtKyd8zK3wJvdJfU3+NnNRdA9bAWsFVwwVLGLPRxQG49wgnO00SHLER7x5J15t97dxz3wKuWF2MG34el34YWM3A==</latexit><latexit sha1_base64="cnYS2yp2shTrmx0kcCSSSPFVd0g=">AAAC1HicjVLLSgMxFD0dX7VWrS51M1gEV2XGjS4FNy5cVLAPaEvJTNMaOi9mMmIZCu7ciV/hVv9G/AP9C2/iFNQimmGSk3PvOclN4kSeSKRlvRaMhcWl5ZXiammtvL6xWdkqN5MwjV3ecEMvjNsOS7gnAt6QQnq8HcWc+Y7HW874VMVb1zxORBhcyknEez4bBWIoXCaJ6ld2ulL4PDG7kt9IZ5jpUcjsfDrtV6pWzdLNnAd2DqrIWz2svKCLAUK4SOGDI4Ak7IEhoa8DGxYi4nrIiIsJCR3nmKJE2pSyOGUwYsfUj2jWydmA5soz0WqXVvHoj0lpYp80IeXFhNVqpo6n2lmxv3ln2lPtbUKjk3v5xEpcEfuXbpb5X52qRWKIY12DoJoizajq3Nwl1aeidm5+qUqSQ0ScwgOKx4RdrZyds6k1ia5dnS3T8TedqVg1d/PcFO9ql3TB9s/rnAfNw5pt1ewLC0XsYg8HdI1HOMEZ6miQ5S0e8YRngxl3xv3nUzAK+ZvYxrdmPHwA8aaZpg==</latexit><latexit sha1_base64="cnYS2yp2shTrmx0kcCSSSPFVd0g=">AAAC1HicjVLLSgMxFD0dX7VWrS51M1gEV2XGjS4FNy5cVLAPaEvJTNMaOi9mMmIZCu7ciV/hVv9G/AP9C2/iFNQimmGSk3PvOclN4kSeSKRlvRaMhcWl5ZXiammtvL6xWdkqN5MwjV3ecEMvjNsOS7gnAt6QQnq8HcWc+Y7HW874VMVb1zxORBhcyknEez4bBWIoXCaJ6ld2ulL4PDG7kt9IZ5jpUcjsfDrtV6pWzdLNnAd2DqrIWz2svKCLAUK4SOGDI4Ak7IEhoa8DGxYi4nrIiIsJCR3nmKJE2pSyOGUwYsfUj2jWydmA5soz0WqXVvHoj0lpYp80IeXFhNVqpo6n2lmxv3ln2lPtbUKjk3v5xEpcEfuXbpb5X52qRWKIY12DoJoizajq3Nwl1aeidm5+qUqSQ0ScwgOKx4RdrZyds6k1ia5dnS3T8TedqVg1d/PcFO9ql3TB9s/rnAfNw5pt1ewLC0XsYg8HdI1HOMEZ6miQ5S0e8YRngxl3xv3nUzAK+ZvYxrdmPHwA8aaZpg==</latexit><latexit sha1_base64="Gw/zJ8h61D67djM5rv4cMIDgbLk=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUnc6LLoxoWLCvYBtpQkndaheZFMxBIK7tyJW3/Arf6N+Af6F94ZU1CL6ITMnDn3njNz5zqRxxNhmq8FbWZ2bn6huFhaWl5ZXdPXNxpJmMYuq7uhF8Ytx06YxwNWF1x4rBXFzPYdjzWd4bGMN69YnPAwOBejiHV8exDwPndtQVRX32oL7rPEaAt2LZx+plYustPxuKuXzYqphjENrByUkY9aqL+gjR5CuEjhgyGAIOzBRkLfBSyYiIjrICMuJsRVnGGMEmlTymKUYRM7pHlAu4ucDWgvPROldukUj/6YlAZ2SRNSXkxYnmaoeKqcJfubd6Y85d1GtDq5l0+swCWxf+kmmf/VyVoE+jhUNXCqKVKMrM7NXVL1KvLmxpeqBDlExEnco3hM2FXKyTsbSpOo2uXb2ir+pjIlK/dunpviXd6SGmz9bOc0aOxXLLNinZnl6lHe6iK2sYM96ucBqjhBDXXyvsEjnvCs2dqtdqfdf6ZqhVyziW9De/gAoSGa7Q==</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit><latexit sha1_base64="DwE+zWMMSSdhc/672E//hrVZTVA=">AAAC33icjVHLSsNAFD2Nr1pfUXe6CRbBVUlE0GXRjQsXFewD2lKSdFqH5kUyEUspuHMnbv0Bt/o34h/oX3hnTEEtohMyc+bce87MnetEHk+Eab7mtJnZufmF/GJhaXlldU1f36glYRq7rOqGXhg3HDthHg9YVXDhsUYUM9t3PFZ3BicyXr9iccLD4EIMI9b27X7Ae9y1BVEdfasluM8SoyXYtXB6I7VyMTobjzt60SyZahjTwMpAEdmohPoLWugihIsUPhgCCMIebCT0NWHBRERcGyPiYkJcxRnGKJA2pSxGGTaxA5r7tGtmbEB76ZkotUunePTHpDSwS5qQ8mLC8jRDxVPlLNnfvEfKU95tSKuTefnEClwS+5dukvlfnaxFoIcjVQOnmiLFyOrczCVVryJvbnypSpBDRJzEXYrHhF2lnLyzoTSJql2+ra3ibypTsnLvZrkp3uUtqcHWz3ZOg9p+yTJL1vlBsXyctTqPbexgj/p5iDJOUUGVvG/wiCc8a7Z2q91p95+pWi7TbOLb0B4+AKJhmvE=</latexit>

1p 2p 3p 2i 3i

u

u

u

u
ip pi up

……

1. Two-stage Pre-training

2. Fine-tuning

3. Out-of-domain Generalization

Stage 1: Initialization (RWR) Stage 2: Refinement (Meta-graph)

2u

RWR

Tree-based
RWR

(b) Masked Pre-training & Fine-tuning(a) Architecture: kgTransformer & Mixture-of-Experts

Figure 2: The KG Pre-Training and Reasoning Framework. (a) kgTransformer with Mixture-of-Experts is a high-capacity architecture
that can capture EPFO queries with exponential complexity. (b) Two-stage pre-training trades off general knowledge and task-specific sparse
property. Together with fine-tuning, kgTransformer can achieve better in-domain performance and out-of-domain generalization.

0 100 200 300 400
0.1

0.2

0.3

0.4

0.5

FF
N

ac
tiv

at
io

n
ra

tioLayer 1
Layer 2
Layer 3
Layer 4

Layer 5
Layer 6
Layer 7
Layer 8

Figure 3: FFN’s activation ratio of kgTransformer along pre-
training steps (w/o MoE) in preliminary experiments.

where 𝑆 = {(𝑖, 𝑠) |𝑠 ∈ softmax(Top-2(x(𝑘−1)𝑒 Wgate)), 𝑖 is the index of 𝑠}.
By using MoE, we can significantly enlarge the actual model size
with approximately the same training computation as the FFN
in Equation 4. During inference, all experts are included in the
computation and the FFN output becomes the weighted average of
every expert’s output. The implementation details can be found in
Appendix C.

3.2 Masked Pre-Training and Fine-Tuning
To further improve the generalizability of kgTransformer, we
present a masked pre-training and fine-tuning framework for KG
reasoning, which is illustrated in Figure 2 (b).

3.2.1 Two-stage Pre-training: Initialization and Refinement
Most existing EPFO reasoners train the embeddings over a limited
number of sampled queries with few specific query types in a
supervised manner [28]. The low coverage of entities and relations
in original KGs in training usually leads to poor transferability to
queries with unseen entities in testing. In addition, the reasoners are
expected to answer out-of-domain types of queries after training.
For example, the standard benchmark [28] trains the model on 5

types of queries (1p, 2p, 3p, 2i, and 3i), and asks the model to test
on additional types of queries (ip, pi, 2u, and up).

To overcome this challenge, we propose to do masked pre-
training for kgTransformer. The main idea is to randomly sample
arbitrary-shaped masked subgraphs from the original KGs’ training
set to pre-train the model. Its advantages lie in the large receptive
fields of sampled subgraphs, diverse shapes of queries, and the high
coverage over original KGs. To fully explore general knowledge
from pre-training, we should sample masked query graphs as dense
and large as possible; however, the query graphs during down-
stream reasoning are usually small and sparse. Thus, such strategy
would cause a mismatch between pre-training and downstream
distributions, resulting in performance degradation.

To mitigate the issue, we introduce a two-stage masked pre-
training strategy for kgTransformer. The first stage aims to initial-
ize kgTransformer with KGs’ general knowledge, and the second
one further refines its ability for small and sparse queries during
inference.

Stage 1: Dense Initialization. The goal of this stage is to enable
kgTransformer with the general knowledge in KGs via masked
pre-training over dense and large sampled subgraphs.

We use two random-walk-based strategies to sample on original
KGs’ training set. One is the random walk with restart (RWR),
for which we make no assumption on the shapes of subgraphs it
may sample. Another is a tree-based RWR strategy, for which we
constrain the shape of sampled graphs as tree structures to cater
conjunctive queries. We include a majority of induced relations
between sampled entities for denser contexts.

Both methods are used to produce sampled query subgraphs.
Given a kgTransformer parameterized by 𝜃 , a set of random sam-
pled entities Emask that are masked by a special mask embedding
turn the trainable input embeddings X = [x(0)𝑒0 , ..., x

(0)
𝑒𝑇] into mask

Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

corrupted X̂. The dense initialization stage seeks to optimize

Linit = −
∑︁

𝑒m∈Emask

log𝑝𝜃 (x𝑒m |X̂,A) (7)

where A is the adjacency matrix. The prediction is done simultane-
ously for all masked nodes, rather in an autoregressive manner.

Stage 2: Sparse Refinement. The goal of this stage is to further
enhance the model’s capacity by using meta-graph sampling for
the EPFO queries that are commonly sparse and small.

We adopt the basic EPFO patterns (1p, 2p, 3p, 2i, and 3i) as meta-
graphs, which involve no more than four entities and relations.
No induced relations between entities are reserved. Following real
query practices, except for source entities (“ ” in Figure 2(b)), other
entities are all masked but only the target entity (“ ”) is predicted
in each query type.

Given each meta-graph type, the set of masked entities Emask =

Einter ∪ Etarget where Einter and Etarget refer to the sets of interme-
diate and target entities, respectively. The sparse refinement stage
only optimizes the error Lrefine on target entity 𝑒t ∈ Etarget as the
same form of Linit as

Lrefine = −
∑︁

𝑒t∈Etarget

log 𝑝𝜃 (x𝑒t |X̂,A) (8)

During kgTransformer pre-training, these two stages are conducted
sequentially rather than in parallel.

3.2.2 Fine-tuning
We introduce the fine-tuning strategy of kgTransformer for down-
stream reasoning tasks. Though with the sparse refinement stage
during pre-training, our preliminary experiments (Cf. Table 2) show
that fine-tuning is still necessary for kgTransformer as the labeled
supervision information is used to tune the pre-trained model for
downstream tasks.

Specifically, we fine-tune the pre-trained kgTransformer using
the downstream EPFO reasoning datasets in the form of masked
prediction. Given a set of feasible answers E𝐴 for a masked query
graph, the fine-tuning loss function per query is formulated as

Lft = − 1
|E𝐴 |

∑︁
𝑒𝑎 ∈E𝐴

log
exp(x(𝐿)⊺𝑒𝑎 u𝑒𝑎)

exp(x(𝐿)⊺𝑒𝑎 u𝑒𝑎) +
∑
𝑒∉E𝐴

exp(x(𝐿)⊺𝑒 u𝑒)
(9)

where other answers’ predicted logits are ignored when computing
the loss for one answer, and per query loss is averaged among all
answers’ losses. u𝑒 refers to entity 𝑒’s embedding in the decoder.

In practice, an intuitive strategy is to fine-tune the pre-trained
kgTransformer on the corresponding downstream training set for
each reasoning task. However, the recent NLP studies [26] have
demonstrated that the multi-task fine-tuning can avoid over-fitting
and let tasks benefit from each other. Inspired from this observation,
we first jointly fine-tune kgTransformer on all possible downstream
training sets, and then fine-tune it for each single task. In addition,
we observe that a combination of several downstream training sets
can sometimes be much better than one single task’s training set
(Cf. Table 6). Finally, the best checkpoint for testing is selected on
the basis of per task validation set performance.

3.2.3 Out-of-domain Generalization
To better test the model’s generalizability to unseen queries, four
specific types of out-of-domain queries, ip, pi, 2u, up, are provided
only in the validation and test sets as illustrated in Figure 2 (b).

Among them, the conjunctive queries ip and pi can be repre-
sented as query graphs. For the disjunctive/union queries 2u and
up, we adopt the idea of Disjunctive Normal Form [6]. Specifically,
we first predict on the decomposed conjunctive queries respec-
tively, then normalize each probability distribution into its rank,
and finally combine the ranks by taking the highest rank. Instead
of taking the mean or max of probabilities, we find that re-scoring
the entity prediction by its rank from the probability distribution
in each decomposed conjunctive query is more effective, as the
probability distributions for different decomposed queries can be
of different scales.

4 Experiments
In this section, we evaluate kgTransformer’s capacity to reason for
EPFO queries with at least one imputed edge, i.e., for answers that
cannot be obtained by direct KG traverses [29]. We employ two
benchmarks FB15k-237 and NELL995 with nine different reasoning
challenges including both in-domain and out-of-domain queries
following prior settings in Query2Box [28].

Datasets. The statistics of FB15k-237 [35] and NELL995 [44] can be
found in Table 7. We use the standard training/validation/test edge
splits [28] to pre-train the kgTransformer model. G𝑡𝑟𝑎𝑖𝑛 contains
the training edges, and the subgraphs are sampled from G𝑡𝑟𝑎𝑖𝑛 for
pre-training. We search for hyper-parameters over G𝑣𝑎𝑙𝑖𝑑 . Here we
do not include FB15k as it is known to suffer frommajor test leakage
through inverse relations as illustrated in [35], which consequently
proposes the updated dataset FB15k-237. See Table 8 in Appendix
for more detailed information about the datasets.

In addition, the query-answer datasets J𝑞Ktrain, J𝑞Kvalid, J𝑞Ktest
are constructed for logic query reasoning by Query2Box [28], in-
cluding chain-shaped queries (1p, 2p, 3p), conjunctive queries (2i, 3i,
ip, pi), and disjunctive queries (2u, up). For a query 𝑞, the three sets
of answers are obtained by performing subgraph matching over
three graphs: J𝑞K𝑡𝑟𝑎𝑖𝑛 fromG𝑡𝑟𝑎𝑖𝑛 , J𝑞K𝑣𝑎𝑙𝑖𝑑 fromG𝑣𝑎𝑙𝑖𝑑\G𝑡𝑟𝑎𝑖𝑛 and
J𝑞K𝑡𝑒𝑠𝑡 from G𝑡𝑒𝑠𝑡 \G𝑣𝑎𝑙𝑖𝑑 . Therefore, it does not spoil the train/de-
v/test split in the original dataset. We use J𝑞K𝑡𝑟𝑎𝑖𝑛 for fine-tuning
and training, J𝑞K𝑣𝑎𝑙𝑖𝑑 for validating, and J𝑞K𝑡𝑒𝑠𝑡 for testing. Such
design allows us to test if the model can predict non-trivial answers
that are unable to obtain by traversing the given KG.

The Evaluation Protocol.We follow the evaluation protocol in
Query2Box [28] including the filtering setting [3] and metrics cal-
culation. In filtering setting, since the answers to most queries are
not unique, we rule out other correct answers when calculating the
rank of one answer 𝑎. Hits at K(Hits@Km) is used as the metric,
which is different from Hits@K as it requires to first average on
Hits@K per query and then average over all queries. See more
details in Appendix B).

4.1 Main Results
We compare kgTransformer with various methods based on both
KGEs and sequence encoders, including GQE [12], Q2B [28],

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Liu et al.

Table 1: Hits@3m for complex query reasoning. (bold denotes the best results; underline denotes the second best results).

Dataset Model Avg Avg
w/o u

In-domain Out-of-domain

1p 2p 3p 2i 3i ip pi 2u up

NELL995

GQE [12] 0.248 0.270 0.417 0.231 0.203 0.318 0.454 0.081 0.188 0.200 0.139
Q2B [28] 0.306 0.317 0.555 0.266 0.233 0.343 0.480 0.132 0.212 0.369 0.163
EmQL [34]1 0.277 0.294 0.456 0.231 0.172 0.331 0.483 0.143 0.244 0.226 0.207
BiQE [20] - 0.344 0.587 0.305 0.326 0.371 0.531 0.103 0.187 - -
CQD(CO) [1] 0.368 0.370 0.667 0.265 0.220 0.410 0.529 0.196 0.302 0.531 0.194
CQD(Beam) [1] 0.375 0.385 0.667 0.350 0.288 0.410 0.529 0.171 0.277 0.531 0.156

kgTransformer 0.399 0.408 0.625 0.401 0.367 0.405 0.546 0.203 0.306 0.469 0.270

FB15k-237

GQE [12] 0.230 0.250 0.405 0.213 0.153 0.298 0.411 0.085 0.182 0.167 0.160
Q2B [28] 0.268 0.283 0.467 0.240 0.186 0.324 0.453 0.108 0.205 0.239 0.193
EmQL [34]1 0.219 0.241 0.389 0.201 0.154 0.275 0.386 0.101 0.184 0.115 0.165
BiQE [20] - 0.293 0.439 0.281 0.239 0.333 0.474 0.110 0.177 - -
CQD(CO) [1] 0.272 0.290 0.512 0.213 0.131 0.352 0.457 0.146 0.222 0.281 0.132
CQD(Beam) [1] 0.290 0.315 0.512 0.288 0.221 0.352 0.457 0.129 0.249 0.284 0.121

kgTransformer 0.325 0.350 0.459 0.312 0.276 0.398 0.528 0.189 0.286 0.263 0.214
1 EmQL’s reported results are not under the standard metric. We have verified the mismatch with its authors and re-evaluated the performance.

Table 2: Ablation on pre-training & fine-tuning (Hits@3m).

FB15k-237 NELL995

kgTransformer (Stage 1 + Stage 2) 0.336 0.395

-only Stage 1 in pre-training 0.308 0.307
-only Stage 2 in pre-training 0.307 0.399

-w/o fine-tuning 0.301 0.368
-w/o pre-training 0.262 0.288

BiQE [20], EmQL [34], and the state-of-the-art baseline CQD [1].
Detail descriptions can be found in Appendix E.

Table 1 reports the Hits@3m results for all query types on FB15k-
237 and NELL995. For FB15K-237, Note that the two-stage pre-
training is sequentially adopted for FB15K-237 and only the second
stage of pre-training is used for NELL995 (Cf. Section 4.2 for de-
tailed analysis). Among most cases, kgTransformer obtains the best
performance on both datasets. In contrast with BiQE, which is also
based on Transformer, the kgTransformer model achieves average
improvements of 6.4% (18.6% relative) and 5.7% (19.5% relative)
without union operation on NELL995 and FB15k-237, respectively.
It demonstrates the proposed method’s architecture superiority
in terms of the model capacity and generalizability. In addition,
kgTransformer can perform union operations, supporting the com-
plete set of EPFO queries.

Compared to the previous state-of-the-art CQD, kgTransformer
obtains 2.4% (6.4% relative) and 3.5% (12.1% relative) improvements
on average over NELL995 and FB15k-237, respectively. For out-of-
domain reasoning queries on FB15k-237, kgTransformer outper-
forms CQD by significant margins for most types, demonstrating

pre-training’s capability in helping the model gain out-of-domain
generalizability.

The major deficiency of kgTransformer happens for the 1p query,
which is identical to the conventional knowledge graph completion
problem. First, kgTransformer’s multi-layer Transformer architec-
ture may be unfriendly to queries with limited contexts. In addition,
the training objective of kgTransformer focuses on complex queries
with multiple entities and relations instead of those with two en-
tities and one relation in a triplet. We will the improvement of
kgTransformer for the 1p query for future research.

4.2 Ablation Study

Pre-Training and Fine-Tuning Strategies.We analyze the ne-
cessity of two-stage pre-training and the function of fine-tuning
through ablation study on both datasets. The contributions of fine-
tuning and the pre-training stages are summarized in Table 2, where
the average Hits@3m results for all query types are reported.

We observe that without fine-tuning, the performance of kg-
Transformer drops about 3% in absolute numbers for both datasets,
and further without pre-training, the performance drops are en-
larged to 7% on FB15k-237 and 11% on NELL995. This demon-
strates that both pre-training and fine-tuning can help improve
the model capacity of kgTransformer for complex query reasoning.
In addition, the pre-trained kgTransformer without fine-tuning
can achieve comparable (0.368 vs. 0.375 on NELL99) or even better
(0.301 vs. 0.290 on FB15k-237) results than CQD [1]—the previously
state-of-the-art method.

Furthermore, two pre-training stages introduce different induc-
tive biases towards the underlying logic. kgTransformer with only
stage 1 pre-training assumes the dense correlation between pairs
of entities, while its stage 2 pre-training assumes that the relations

Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

Figure 4: Hyperparameter analysis on NELL995 (Hits@3m). The default setting is: 8 layers, 1024 for hidden size, 𝛼 = 0.7 for label
smoothing, and 32 experts.

Table 3: Training and inference time (ms) per step along with
different numbers of experts using per step batch size 64.

Number of experts

2 8 16 32

Pre-training stage 1 41.46 42.02 45.38 49.30 (+18.9%)

Pre-training stage 2 17.37 18.83 19.78 24.09 (+38.7%)

Fine-tuning 32.41 32.91 36.46 37.47 (+15.6%)

Inference 12.86 13.36 13.85 14.35 (+11.6%)

among entities follow the chain-rule. We observe that kgTrans-
former with both stages obtains the good results, while kgTrans-
formerwith only stage 2 pre-training generates similar performance
on NELL995, due to the fact that it is sparser than FB15k-237 with
weaker relations within clusters and stronger connections in chains.

MoE Efficiency. We present an efficiency analysis in terms of
the numbers of experts in pre-training, fine-tuning, and inference
stages with a batch size of 64 in both training and inference. Table 3
reports the running time in millisecond. We observe that MoE can
significantly increase the model capacity with limited increase of
computational cost. Take the case of 32 experts for example, MoE
helps to enlarge kgTransformer 16× in size by only taking 11.6%-
38.7% of additional computation.

Hyperparameters.We conduct the ablation experiments on hyper-
parameters, including the number of layers, hidden size, the value
of label smoothing, and the number of experts. Figure 4 reports the
results on NELL995 in terms of Hits@3m.

• Number of layers: In Figure 4 (a), we test the performance of
different number of layers. It suggests that a sufficient and proper
model depth (8 in this case) is essential for kgTransformer, which
can be attributed to the relation between the depth and the size of
the receptive field. Previously studies have shown that very deep
GNNs may suffer from over-smoothing and training instability,
thus causing performance drops [9].

• Hidden size: Figure 4 (b) studies the influence of hidden size. We
observe that the increase of hidden size helps to capture massive
EPFO reasoning patterns, but a too-large one (e.g., 2048) can

harm the performance, as it may suffer from the similar training
difficulty witnessed in KGE-based reasoners [1].

• Label smoothing: Label smoothing is crucial to kgTransformer’s
pre-training, as it mitigates the bias in the pre-training data due
to the on-the-fly sampling. Through experiments in Figure 4 (c),
the optimal value 𝛼 = 0.7 for NELL995 is exceptionally high in
comparison with that in natural language processing (𝛼 = 0.1). It
indicates that by training for long epochs (around 1000 epochs)
with a rather large embedding size (1024), the kgTransformer
model is prone to overfitting in pre-training. We also observe
that exclusion of label smoothing will yield a considerable per-
formance decrease by 2.6%.

• Number of experts:We evaluate the performance of kgTrans-
former with different numbers of experts in Figure 4 (d). The
correspondence of sparse nature in KG reasoning and mixture-of-
experts is one key point in kgTransformer. Compared with the
vanilla Transformer (2 experts), kgTransformer achieves perfor-
mance improvements with more and more experts until 32 (16×
large in model size), demonstrating the power of high-capacity
models in EPFO challenges.

4.3 Case Study

Interpretability. In masked querying, the model is enforced to
produce plausible predictions for every node in the graph because it
does not know the queried nodes in advance. Such property implies
the interpretability of the results. The embeddings of intermediate
variables can be fed into the prediction layer to generate a result,
providing paths to understand how the model produces the answers.

Take the query “Which school is in the same coun-
try as Elmira?”—formally, ?𝐴, ∃𝐸, location in(𝐸𝑙𝑚𝑖𝑟𝑎, 𝐸) ∧
in country(𝐸,𝐴)—in Table 4 for example, the predicted answer
is “Davidson College”. To verify this answer, we check what the
result of 𝐸 is. Inputting the embedding of 𝐸 into the decoder, it
actually gives “U.S.” as the top prediction, which is indeed a valid
intermediate entity. More cases concerning interpretability for 3p
queries are provided in Table 5 in Appendix.

All-Direction Reasoning. Unlike almost all reasoners’ step-by-
step searching, kgTransformer is a Transformer-based GNN that
captures information from all directions simultaneously. As the
second row in Table 4 shows that when the intermediate entity

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Liu et al.

Table 4: Case study on 2p examples. (a) Interpretability. Filling a certain entity as the tail prediction, we use kgTransformer to
predict the unknown intermediates to test its interpretability. (b) All-direction Reasoning. In 2p, intermediate and tail entities are
masked. kgTransformer considers both relations when predicting intermediate node (marked orange). If the second relation is masked (i.e.,
conventional autoregressive reasoning), intermediate’s predictions are valid for the first relation, but no longer for the second (marked red).

Case Head Intermediate entity Tail
(Groundtruth) (Top 3 prediction) (Prediction)

Interpretability Elmira(U.S. City) location in U.S., Canada, UK in country Davidson College

All-direction
Reasoning Salt(2010 film) has subject

CIA, Espionage, PTSD employs George Bush

Serial killer, Espionage, PTSD (masked) -

is required to fit the employs relation, “CIA” is more suitable than
“Espionage” and “PTSD” as it is an agency. Without the ability
to read from tail to head, the model would suggest “Serial killer”
instead, which is inadequate for future deductions.

5 Related Work
Existing works on complex logical queries are based on KGEs [1,
5, 10, 12, 28, 34, 39], sequence encoders [20], or rules [25]. Most
of them are based on traditional KGEs to adapt for complex logi-
cal reasoning with certain geological functions to manipulate the
embedding spaces [10, 12, 28, 29, 34] or logical norms over link
predictors [1]. Graph Query Embedding (GQE) [12] is proposed
to use deep sets as a way for query intersection logic. Logical op-
erators are reformulated as trainable geometric functions in the
entity embedding space. Q2B [28] embeds queries as boxes (i.e.,
hyper-rectangles), and the points inside which are considered as
a potential answer entities of the query. Box Lattice [39] is pro-
posed to learn representations in the space of all boxes (axis-aligned
hyper-rectangles). EmQL [34] proposes an embedding method with
count-min sketch that memories the relations in training set well.
CQD [1] uses the previous neural link predictor ComplEx [36] as
the one-hop reasoner and T-norms [19] as logic operators. By as-
sembling neural link predictors with T-norms, it translates each
query into an end-to-end differentiable objectives. BetaE [29] uti-
lizes Beta distribution for the embeddings. It takes the advantage of
well-defined logic operation over distributions and turns the origi-
nal logic operation over the embedding space into the one over the
distribution space. These approaches can easily incorporate logic
operations, but are hard to generalize well to unseen and more com-
plicated queries, as their architectures of pure embeddings limit
their expressiveness.

There have been efforts to employing advanced architectures
for complex logical queries. BiQE [20] introduces the Transformer
and mask training, decomposing EPFO queries into sequences to
fit the vanilla Transformer’s input constraint. However, its nature
to process sequences only allows it to answer queries in the shape
of directed acyclic graphs (DAGs), which only cover a small set of
all possible EPFO queries. In addition, it still follows the supervised
training fashion and does not make the full use of the KGs.

Pre-training graph neural networks for better transferability
and generalizability has recently aroused wide interest in graph
community, inspired by the progress in language [7] and vision.

Generally, these pre-training strategies can be categorized into two
different self-supervised objectives [22], that is, generative pre-
training [16, 17] and contrastive pre-training [24, 46]. Nevertheless,
they generally focus on pre-training graph neural networks on aca-
demic networks [48], biochemical substances [33], or e-commerce
product graphs [15]. Few efforts have been paid to the challenges
of pre-training graph neural networks on knowledge graphs.

6 Conclusion
We present the Knowledge Graph Transformer (kgTransformer), a
Transformer-based GNN, to pre-train for complex logical reasoning
by leveraging the masked pre-training and fine-tuning approach.
To adapt to graph structural data, we introduce the Triple Trans-
formation and Mixture-of-Experts strategies for a high-capacity
Transformer architecture, and propose a two-stage pre-training
framework to gradually endow kgTransformer with the ability to
transfer and generalize. Extensive experiments and ablation study
demonstrate the effectiveness of kgTransformer’s architecture and
pre-training methods.

Notwithstanding the promising results, there exist limitations of
kgTransformer that require future studies. First, kgTransformer is
not competitive on 1p and 2u reasoning queries which are equiv-
alent to the traditional KG completion problem), as we have not
injected inductive biases known to be critical for GNNs on KGs
(e.g., CompGCN [37]). Second, the KG pre-training is limited to a
single KG and does not benefit from cross-KG knowledge transfer. It
would be an interesting direction to fuse knowledge from multiple
KGs via pre-training to gain further improvements on reasoning.
Third, as the recent work [31] indicates, a sequence-to-sequence
Transformer that leverages text labels of entities as inputs and out-
puts can serve as a promising architecture for KG completion in
certain scenarios. Finally, to jointly model the KG structure and text
information in KG reasoning also remains an unsolved challenge.

ACKNOWLEDGEMENT
We thank the reviewers for their valuable feedback to improve this
work. This work is supported by Technology and Innovation Major
Project of the Ministry of Science and Technology of China un-
der Grant 2020AAA0108400 and 2020AAA0108402, Natural Science
Foundation of China (Key Program, No. 61836013), and National Sci-
ence Foundation for Distinguished Young Scholars (No. 61825602).

Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

REFERENCES
[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2021.

Complex Query Answering with Neural Link Predictors. In ICLR.
[2] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247–1250.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. NIPS 26 (2013).

[4] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka, and Tom M Mitchell. 2010. Toward an architecture for never-ending
language learning. In AAAI.

[5] William W. Cohen, Matthew Siegler, and Alex Hofer. 2019. Neural Query Lan-
guage: A Knowledge Base Query Language for Tensorflow. arXiv:1905.06209

[6] Brian A Davey and Hilary A Priestley. 2002. Introduction to lattices and order,
Second Edition. Cambridge university press.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL. 4171–4186.

[8] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault:
A web-scale approach to probabilistic knowledge fusion. In SIGKDD. 601–610.

[9] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang
Yang, Evgeny Kharlamov, and Jie Tang. 2020. Graph Random Neural Network
for Semi-Supervised Learning on Graphs. NeurIPS (2020).

[10] Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. 2018. Hyperbolic neural
networks. In NeurIPS. 5345–5355.

[11] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer
Feed-Forward Layers Are Key-Value Memories. In EMNLP. 5484–5495.

[12] William LHamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
2018. Embedding logical queries on knowledge graphs. In NIPS. 2030–2041.

[13] Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. 2021.
Fastmoe: A fastmixture-of-expert training system. arXiv preprint arXiv:2103.13262
(2021).

[14] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets
for machine learning on graphs. NeurIPS 33 (2020), 22118–22133.

[16] WHu, B Liu, J Gomes, M Zitnik, P Liang, V Pande, and J Leskovec. 2020. Strategies
For Pre-training Graph Neural Networks. In ICLR.

[17] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
Gpt-gnn: Generative pre-training of graph neural networks. In SIGKDD.

[18] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW. 2704–2710.

[19] Erich Peter Klement, Radko Mesiar, and Endre Pap. 2013. Triangular norms. Vol. 8.
Springer Science & Business Media.

[20] Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. 2021. Answering
Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders.
In AAAI, Vol. 35. 4968–4977.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2020. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.
In ICLR.

[22] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE Transactions
on Knowledge and Data Engineering (2021).

[23] Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
arXiv:1711.05101 [cs.LG]

[24] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph
neural network pre-training. In SIGKDD. 1150–1160.

[25] Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang.
2020. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. In
ICLR.

[26] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the

limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn.
Res. 21, 140 (2020), 1–67.

[27] Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and
Dale Schuurmans. 2021. SMORE: Knowledge Graph Completion and Multi-hop
Reasoning in Massive Knowledge Graphs. arXiv preprint arXiv:2110.14890 (2021).

[28] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2019. Query2box: Reasoning over
Knowledge Graphs in Vector Space Using Box Embeddings. In ICLR.

[29] Hongyu Ren and Jure Leskovec. 2020. Beta Embeddings for Multi-Hop Logical
Reasoning in Knowledge Graphs. In Neural Information Processing Systems.

[30] Lior Rokach. 2010. Pattern classification using ensemble methods. Vol. 75. World
Scientific.

[31] Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla. 2022. Sequence-to-
Sequence Knowledge Graph Completion and Question Answering. In ACL. 2814–
2828.

[32] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. arXiv preprint arXiv:1701.06538 (2017).

[33] Teague Sterling and John J Irwin. 2015. ZINC 15–ligand discovery for everyone.
Journal of chemical information and modeling 55, 11 (2015), 2324–2337.

[34] Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fernando Pereira, and
William W Cohen. 2020. Faithful Embeddings for Knowledge Base Queries.
NIPS 33 (2020).

[35] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features for
knowledge base and text inference. In Proceedings of the 3rd Workshop on Continu-
ous Vector Space Models and their Compositionality. Association for Computational
Linguistics, Beijing, China, 57–66. https://doi.org/10.18653/v1/W15-4007

[36] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In ICML, Vol. 48.

[37] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-based Multi-Relational Graph Convolutional Networks. In ICLR.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS 30 (2017).

[39] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. 2018. Probabilistic
Embedding of Knowledge Graphs with Box Lattice Measures. arXiv:1805.06627

[40] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[41] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. 2014. Knowledge base completion via search-based question
answering. In WWW. 515–526.

[42] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. 2020. On layer
normalization in the transformer architecture. In ICML. PMLR, 10524–10533.

[43] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A
Reinforcement Learning Method for Knowledge Graph Reasoning. In EMNLP.
564–573.

[44] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. DeepPath: A Rein-
forcement Learning Method for Knowledge Graph Reasoning. ACL Workshop,
Copenhagen, Denmark, 564–573. https://doi.org/10.18653/v1/D17-1060

[45] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly
for Graph Representation? NeurIPS 34 (2021).

[46] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. NeurIPS 33
(2020), 5812–5823.

[47] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim.
2019. Graph transformer networks. NeurIPS 32 (2019).

[48] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao
Gu, Yan Wang, Bin Shao, Rui Li, et al. 2019. Oag: Toward linking large-scale
heterogeneous entity graphs. In SIGKDD. 2585–2595.

[49] Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou.
2021. MoEfication: Conditional Computation of Transformer Models for Efficient
Inference. arXiv preprint arXiv:2110.01786 (2021).

[50] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-Dependent Importance Sampling for Training Deep and Large Graph
Convolutional Networks. arXiv:1911.07323

https://arxiv.org/abs/1905.06209
https://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/W15-4007
https://arxiv.org/abs/1805.06627
https://doi.org/10.18653/v1/D17-1060
https://arxiv.org/abs/1911.07323

KDD ’22, August 14–18, 2022, Washington, DC, USA Xiao Liu et al.

A Sampling Method
In the stage 1 of pre-training, we used random-walk based graph
sampling strategies to sample dense and large subgraphs on the
training set. We adopt LADIES [50] sampling method and a variant
of random walk called meta-tree sampling.

Meta-tree Sampling. As a variant of random walk with restart,
meta-tree sampling strategy does not necessarily restart from the
target node every time. Instead, it restarts from any sampled node
with equal probability. The change is inspired by the intention to
sample more neighbors for each node rather than for the target
node in a subgraph. In comparison with tuning the parameters of
RW, meta-tree sampling provides a direct way to spread the density
across all the sampled nodes. Such a density spread is essential for
preventing overfitting to highly dense area. Besides, to sample a
dense graph, we specify the restart probability to be 1.0, which
means it jumps to any sampled node after one step and continue. In
this way, meta-tress sampling balances between the width and the
depth and prevents overfitting problem in our setting. Note that
we do not sample a node more than once, so the sampled subgraph
contains no cycle and forms a tree.

B Evaluation Protocol
To be more precise, we denote the whole entity set asV , and the
filtered entity set w.r.t qeury 𝑞 as S = V\J𝑞Ktest.

rankV (𝑎) = 1 +
∑︁
𝑥 ∈S
⊮[rank(𝑥) < rank(𝑎)] (10)

The metric Mean Reciprocal Rank (MRR) is caculated as 1
rank and

Hits at K(Hits@Km) is calculated as ⊮[𝑟𝑎𝑛𝑘 < 𝐾]. In this paper, we
report the Hits@3m metric, the frequency of the correct answer to
appear in top 3 ranking. The metric of a query is an average of the
metrics over all its predicted answers, and the metric of a type of
query is an average of the metrics over all queries of this type.

C Reproducibility
In this section, we describe the experiment setting in more details.
Label Smoothing. Label smoothing is a technique of regularization.

It utilizes soft one-hop labels instead of hard ones to add noise in
the training, reduces the weights of true labels when calculating the
training loss and thus prevents overfitting when training. Suppose
𝑦ℎ is the original true label, 𝑦𝑙𝑠 is the smoothed label, 𝛼 is the
parameter of label smoothing, 𝐾 is the number of classes.

𝑦𝑙𝑠 = (1 − 𝛼)𝑦ℎ + 𝛼

𝐾
(11)

Since the data used in pre-training is the full graph, much larger
than the query data in fine-tuning, we add label smoothing only in
pre-training. We used 𝛼 = 0.1 for FB15k-237 and 𝛼 = 0.7 for NELL.
Note that because the data used in fine-tuning is limited, we do not
add label smoothing in fine-tuning.

Sampling Parameters. We leverage several sampling methods in
the two pre-training stages where sampling ratio makes a difference
to the final performance. In pre-training stage 1, for FB15k-237, the
ratio between meta-tree sampling and LADIES sampling is 1 : 1;
for NELL, we only use meta-tree sampling. In pre-training stage

2, the ratio between chain-like meta-graphs and branch-like meta-
graphs can be various. We applied grid search within the range
[1 : 20, . . . 1 : 2, 1 : 1, 2 : 1, . . . 20 : 1] and set the ratio to be
4 : 1 for FB15k-237 and 10 : 1 for NELL. Besides, in the stage 1
of pre-training, for each sampled subgraphs, we keep 80% of the
induced edges between nodes and limit the number of nodes in
each subgraph within [8, 16]. In the stage 2 of pre-training, we do
not add induced edges and limit the size of meta-graphs to be less
than 4.
In stage 2 pre-training, we sample two patterns of small graphs for
refinement, chain-like subgraphs and branch-like subgraphs. We
first select a target node from all the nodes uniformly at random. For
the chain-like subgraph sampling, we sample a chain by the Markov
process. In each step, we sample a neighbor of the current node
independently. It is allowed to sample a node more than once in a
chain. For the branch-like subgraph sampling, we sample multiple
neighbors of the target node. We drop those sampled graphs whose
target node has no or only one neighbor and prevent sampling the
same neighbors multiple times to avoid meaningless cases.

Mixture-of-Experts (MoE). We have already discussed the im-
portance of MoE in the setting of multiple patterns reasoning espe-
cially when the FFN is sparsely activated. Note that we use Pre-LN
(Pre-Layer Normalization, which refers to placing the layer nor-
malization in the residual connections and appending an auxiliary
layer normalization before the final linear decoder [42]) instead of
Post-LN (Post-Layer Normalization, which refers to vanilla Trans-
former’s design of placing the layer normalization between the
residual blocks) in MoE, as evidences show that Pre-LN converges
faster and more robustly compared to Post-LN [42]. For the number
of experts, using 2 experts of MoE means the original setting of
FFN. We applied grid search over the number of experts within
[2, 4, 8 . . . 32, 64] and select 32 as the number of experts. We imple-
ment the MoE strategy using the FastMoE2 [13], an open-source
pytorch-based package for MoE with transformers.

Training Parameters. To enhance the generalization ability of
our model, we add some noise to the mask in pre-training stage 1,
following the strategies in BERT. For the nodes to be masked,
• 80% of the time, we replace the node with [mask] token;
• 10% of the time, we keep the node unchanged;
• 10% of the time, we replace the node with a random node.
Such masking ratio forces our model to keep a contextual represen-
tation for every node and thus learn the neighborhood information.
We train our model with batch size 258 in pre-training and 12288
in fine-tuning. We use AdamW[23] with 𝑙𝑟 = 1𝑒 − 4, 𝛽1 = 0.9, 𝛽2 =
0.999, exponential decay rate of 0.997. We also use a dropout prob-
ability of 0.1 every layer.

D Combinatorial Fine-Tuning
In the fine-tuning stage, we conduct multi-task fine-tuning fol-
lowed by single-task fine-tuning. Multi-task fine-tuning refers to
fine-tuning the pretrained model with all of the query-answer train-
ing sets, including 1𝑝, 2𝑝, 3𝑝, 2𝑖, 3𝑖 . Single-task fine-tuning follows
multi-task fine-tuning by tuning with only part of the query-answer
training sets, either a single query’s set or a combination of several
2https://github.com/laekov/fastmoe

https://github.com/laekov/fastmoe

Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 5: Case study on 3p examples (Interpretability). Filling a certain entity as the prediction for tail, we use kgTransformer to predict
the unknown intermediate node embedding to test its interpretability. Compared to 2p, 3p queries have one more intermediate entity. Each
line correspond to a back-query and the intermediate entities reacts to the change of tail entities.

Head Intermediate 1 Intermediate 2 Tail
(Ground truth) (Back-queried) (Back-queried) (Prediction)

TV5 (TV network) leader title
President

company with title
Verizon

region in
New York

President eBay California
President Ford Motor Michigan

Priyanka Chopra gender
Female

risk factors
Hypothyroidism

risk factors
Depression

Female Cirrhosis Peritonitis
Female Cirrhosis Liver failure

Clarinet role
Paquito D’Rivera

Profession
Musician

specialization of
Artist

Imogen Heap Singer-songwriter Musician
Harry Shearer Author Writer

Table 7: Dataset statistics and details of splitting.

Dataset #Ent. #Rel. #Edges Train Valid Test

FB15k-237 14,505 237 310,079 272,115 17,526 20,438
NELL995 63,361 200 142,804 114,213 14,324 14,267

Table 8: Splitting statistics of query-answer dataset.

Dataset
Train Valid Test

1p others 1p others 1p others

FB15k-237 149689 149689 20101 5000 22812 5000
NELL-995 107982 107982 16927 4000 16927 4000

Table 6: Preliminary experiments on combinatorial strategies
in the single-task tuning after multi-task tuning on NELL995.
Base case refers to the results after multi-task tuning. Bold results
indicate the most effective single-task tuningmethod for each query.
In this version not all the strategies reported in the final version
are applied.

In-domain Out-of-domain

1p 2p 3p 2i 3i ip pi 2u up

Base 0.605 0.345 0.277 0.373 0.521 0.164 0.252 0.428 0.265

1p 0.609 0.351 0.282 0.377 0.523 0.178 0.267 0.432 0.258
2p 0.613 0.355 0.278 0.379 0.515 0.166 0.258 0.432 0.269
3p 0.609 0.328 0.285 0.378 0.522 0.162 0.253 0.425 0.262
2i 0.594 0.339 0.273 0.390 0.521 0.155 0.249 0.427 0.254
3i 0.590 0.334 0.274 0.356 0.522 0.152 0.237 0.428 0.255
1p, 2p 0.612 0.358 0.281 0.368 0.499 0.183 0.263 0.431 0.272
1p, 3p 0.615 0.348 0.287 0.362 0.491 0.169 0.253 0.428 0.263
1p, 2p, 3p 0.611 0.351 0.288 0.363 0.494 0.183 0.257 0.431 0.266

query’s sets. To compare different combinations in single-task fine-
tuning, we just pick an arbitrary checkpoint in pretraining stage
with preliminary result, do multi-task fine-tuning and then show
different combinations of single-task fine-tune.

E Comparison Methods
In this section, we briefly go through the compared baselines for
reference.

• GQE [12] utilizes deep set for intersection (conjunctive) logical
operation as learned geometric functions in this space.

• Q2B [28] embeds queries as hyper-rectangles and answers as
points inside the rectangles.

• EmQL [34] utilizes count-min sketch for query embedding in
order to be more faithful to deductive reasoning. It focuses on
deductive reasoning which does not require generalization.

• BiQE [20] utilizes bi-directional attention mechanism and posi-
tional embedding to capture interactions within a graph.

• CQD [1] uses ComplEx as one-hop reasoner and various T-norms
as logic operators. It provides end-to-end differentiable objective
by uniting one-hop reasoners and logic operators.

F Statistics of Datasets
We provide the information of the splitting of original datasets in
Table 7 and the splitting of the query-answer datasets in Table 8.

	Abstract
	1 INTRODUCTION
	2 The EPFO Logical Queries
	3 The KG Pre-Training Framework
	3.1 The kgTransformer Architecture
	3.2 Masked Pre-Training and Fine-Tuning

	4 Experiments
	4.1 Main Results
	4.2 Ablation Study
	4.3 Case Study

	5 Related Work
	6 Conclusion
	REFERENCES
	A Sampling Method
	B Evaluation Protocol
	C Reproducibility
	D Combinatorial Fine-Tuning
	E Comparison Methods
	F Statistics of Datasets

