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Users with demographic profiles in social networks offer the potential to understand the social principles
that underpin our highly connected world, from individuals, to groups, to societies. In this paper, we har-
ness the power of network and data sciences to model the interplay between user demographics and social
behavior, and further study to what extent users’ demographic profiles can be inferred from their mobile
communication patterns. By modeling over 7 million users and 1 billion mobile communication records, we
find that during the active dating period (i.e., 18 — 35 years old), users are active in broadening social con-
nections with males and females alike, while after reaching 35 years of age people tend to keep small, closed,
and same-gender social circles. Further, we formalize the demographic prediction problem of inferring users’
gender and age simultaneously. We propose a factor graph-based WhoAmI method to address the problem
by leveraging not only the correlations between network features and users’ gender/age, but also the inter-
relations between gender and age. In addition, we identify a new problem—coupled network demographic
prediction across multiple mobile operators—and present a coupled variant of the WhoAmI method to ad-
dress its unique challenges. Our extensive experiments demonstrate both the effectiveness, scalability, and
applicability of the WhoAmI methods. Finally, our study finds a greater than 80% potential predictability for
inferring users’ gender from phone call behavior and 73% for users’ age from text messaging interactions.
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1. INTRODUCTION

As of 2016, the number of mobile users is 4.611 billion, corresponding to a global pen-
etration of 62%; The number of mobile subscriptions across the globe reaches 7.377
billion in 2016, which is approximately the same with the world population, from a
recent report by the International Telecommunications Union (ITU). On average, each
mobile user makes, receives or avoids 22 phone calls and sends or receives text mes-
sages 23 times, and checks their phones up to 150 times a day'. These mobile devices
record huge amounts of user behavioral data, in particular users’ daily communica-
tions with others. This provides us with an unprecedented opportunity to study how
people build and maintain connections in mobile communication networks.

Previous work on mobile communication networks mainly focused on macro-level
models, like network distributions [Onnela et al. 2007], scale free [Du et al. 2009],
duration distributions [Dong et al. 2013; Seshadri et al. 2008], and mobility model-
ing [Gonzalez et al. 2008; Wang et al. 2011; Dong et al. 2015a]. Recently, researchers
have also started to pay more attention to the micro-level analysis of the mobile net-
works. For example, Eagle et al. [Eagle et al. 2009] studied the friendship network
of 100 specific mobile users (students or faculties at MIT). They investigated human
interactions (what people do, where they go, and with whom they communicate) based
on the machine-sensed environmental data collected by mobile devices. Meng et al.
[Meng et al. 2016] studied the mobile communication networks of 200 students at the
University of Notre Dame. They explored the interplay between individuals’ evolving
interaction patterns and traits. However, these work did not consider the interplay be-
tween user demographics and communication behavior. More recently, Nokia Research
organized the 2012 Mobile Data Challenge to infer mobile user demographics by us-
ing communication records of 200 users [Ying et al. 2012; Mo et al. 2012]. However, the
scale of the network is very limited. In this paper, we leverage a large-scale mobile net-
work to study how users’ communication behaviors correlate with their demographic
attributes.

Contributions. We employ a real-world large mobile network comprised of more than
7,000,000 users and over 1,000,000,000 communication records (voice phone call and
short text messaging) as the basis of our study, which we use to systematically in-
vestigate the interplay of user communication behavior and demographic information.
Through the study, we first unveil several intriguing social strategies that users of dif-
ferent age and gender use to meet their social needs, i.e., building new connections
and maintaining existing relationships. Simultaneously, we examine the differences
between people’s phone call and text messaging behavior. Based on the discoveries, we
then develop a unified probabilistic model—WhoAmI—to predict users’ demographic
profiles based on their communication behaviors. To the best of our knowledge, we are
the first to study the problem of inferring user demographics and social strategies in
such a real-world large mobile network.

This work expands on our previous work [Dong et al. 2014] in following ways. First,
we investigate social strategies from not only the voice phone call network but also
the short text messaging network and further conclude the networking differences
and similarities between human phone call and text messaging behaviors. Second,
we propose to use a null model to validate the statistical significance of social strate-
gies observed from network structures. Third, we generalize the previous prediction
model, which can only handle two dependent variables, to support multiple dependent
variables, enabling the simultaneous inference of any number of interrelated node at-
tributes. Fourth, we identify a new problem—coupled network demographic prediction

1 http://www.dailymail.co.uk/news/article-2276752/Mobile-users-leave-phone-minutes-check-150-times-day.html
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Fig. 1. Evolution of demographic-based social strategies in human communication.

across two mobile operators. To solve the unique challenges raised in coupled networks,
we propose a variant version of the WhoAmI method—CoupledMFG. In order to han-
dle large-scale (coupled) networks, we further present a distributed learning algorithm
accompanying with the models. Finally, in addition to the prediction experiments in
[Dong et al. 2014], we demonstrate two real-world telecommunication applications:
one for the normal demographic prediction problem, that is, the prediction of one mo-
bile operator’s prepaid users’ demographics by the machine learning model trained on
its postpaid users, and the other one for the coupled network demographic prediction,
that is, the inference of competitors’ user profiles by using the model trained on one
operator’s own users.

Key Findings. Our study unveils the significant social strategies and their evolu-
tion across the lifespan in human communication, which are highlighted in Figure
1. Specifically, we discover that younger people are very active in broadening their
social circles, while older people tend to maintain smaller but more closed connec-
tions. We find that the communications between two younger opposite-gender users
are more frequent than those between same-gender users. We also observe frequent
cross-generation interactions that are essential for bridging age gaps in family, work-
place, education, and human society as a whole [Mead 1970]. We unveil that people
expand both same-gender and opposite-gender connections during their active dat-
ing period (18 — 34 years old), while they maintain only same-gender social groups
in mobile communication after 35 years of age. Finally, our analysis shows strong in-
terrelations between users’ age and gender. For example, a 20-year-old female’s social
networking behavior is distinct from not only a 20-year-old male’s, but also from a
50-year-old female’s.

Demographic Prediction. Based on these interesting discoveries, we further study
to what extent users’ demographic information can be inferred by mobile social net-
works. We formally define a double-label classification problem. The objective is to
simultaneously infer users’ gender and age by leveraging their interrelations. This
problem is different from traditional classification problems, where only the correla-
tions between the dependent variable Y and feature vector X are considered. In this
problem, we are given two dependent variables Y (gender) and Z (age), and a fea-
ture vector X. We aim to capture the correlations between X and Y, X and Z, and
the interrelations between Y and Z to simultaneously infer Y and Z. To address this
problem, we present the WhoAmlI method, whereby the interrelations between multi-
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Fig. 2. Demographic prediction performance. (Cf. §7 for details of the comparison methods).

ple dependent variables can be modeled. As a result, the presented WhoAmI method
is able to simultaneously infer users’ gender and age. The experiments demonstrate
that the proposed method can achieve an accuracy of 80% for predicting users’ gender
and 73% for predicting users’ age according to daily mobile communication patterns,
significantly outperforming (by up to 10% in terms of F1-Measure shown in Figure 2)
several alternative methods (Cf. §7 for details of the comparison methods). To scale up
the proposed method to handle large-scale networks, we further develop a distributed
learning algorithm, which can reduce the computational time to sub-linear speedup (9
— 10x with 16 CPU cores) by leveraging parallel computing.

We further demonstrate one application scenario of demographic prediction in
telecommunication industry. In real world, there are two kinds of mobile subscriptions
of a mobile operator: postpaid? and prepaid?. Specifically, a postpaid mobile user is re-
quired to create an account by providing detailed demographic information (e.g., name,
age, gender, etc.). However, a recent ITU report indicates that there is still a large por-
tion of prepaid users (also commonly referred to as pay-as-you-go) who are required to
purchase credit in advance of service use. Statistics show that 95% of mobile users in
India are prepaid, 80% in Latin America, 70% in China, 65% in Europe, and 33% in the
United States. Even in the U.S., the switch to prepaid plans was accelerating during
the economic recession from 2008. Prepaid services allow the users to be anonymous—
no need to provide any user-specific information. In this sense, mobile operators are
highly motivated to infer their prepaid users’ demographic profiles. We take one case
study to demonstrate the effectiveness of our discoveries and methodologies on this
real-world application of demographic prediction for prepaid users.

Coupled Network Demographic Prediction. In addition to its prepaid users, a
mobile operator also does not have the demographic information of users of another
operator. For example, in Figure 3 a mobile operator O; (e.g., AT&T) could have the
communication logs of two O; users, and one O; user and one user of another opera-
tor O, (Verizon) [Dong et al. 2015]. In real world, O; does not have the access to the
demographic profiles of its competitor Os’s users. However, it is critical for mobile ser-

2http://en.vvikipedia.or‘g/wiki/Postpaid,mobile,phone
3http://en‘wikipedia.org/wiki/PrepaidJnobile,phone
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Fig. 3. An illustrative example of coupled networks across two mobile operators. The source net-
work is mobile operator O1’s network. O; could also have the demographic information of its own users
(postpaid). The objective is to predict the demographic profiles of users in its competitor O2’s network.

vice providers to build the demographic profiles of its competitors’ customers. This can
help them make better marketing strategies (e.g., identifying potential customers and
preventing customer churning). Moreover, by using demographic information, service
providers can supply users with more personalized services and focus on enhancing
the communication experience.

In light of the real scenario in telecommunication, we formalize the coupled network
demographic prediction problem, where we have the structure and user demographic
information of one (source) network G° (e.g., O;) and the interactions between this
network and another (target) network G7 (e.g., O3). The goal is to predict the demo-
graphic attributes of users in the target network. This problem faces several unique
challenges, including the cold start of the target network structure and as a result,
the asymmetry of source and target users’ graph-based features. To address them,
we present a coupled version of the WhoAmI method. Our experiments over six pairs
of mobile operators demonstrate the predictability of competitors’ user demographics,
enabling the potential for business intelligence across mobile operators.

Organization. We introduce the mobile networks in Section 2. We report the social
strategies that are discovered from human mobile communication networks in Section
3 and propose a null model to validate their statistical significance in Section 4. We
formalize the demographic prediction problems in Section 5. We present our solutions
for inferring user demographics in Section 6. Prediction results are demonstrated in
Section 7. Finally, we summarize the related work in Section 8 and conclude this work
in Section 9.

2. MOBILE NETWORK DATA WITH DEMOGRAPHICS

The dataset used in this paper is extracted from a collection of more than 1 bil-
lion (1,000,229,603) phone call and text messaging events from an anonymous coun-
try [Gonzalez et al. 2008; Ercsey-Ravasz et al. 2012; Dong et al. 2014; Dong et al. 2015],
which spans from Aug. 2008 to Sep. 2008. Notice that we only consider the communica-
tions that were made between users within this country. We construct two undirected
and weighted mobile communication networks from the de-identified and anonymous
data: a phone call network (referred to as CALL) and a text messaging network (re-
ferred to as SMS). Specifically, we view each user as a node v; and create an edge e¢;;
between two users v; and v; if and only if they made reciprocal calls or text messages
(v; called v; and also v; called v; for at least one time during the observation period).

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.
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Table I. The statistics of mobile networks.

‘ networks #nodes #edges ‘
CALL network with user demographics (CALL,;) 7,440,123 | 32,445,941
SMS network with user demographics (SMS,) 4,505,958 | 10,913,601
Reciprocal CALL network (CALL,.) 4,927,095 | 16,674,164
Reciprocal SMS network (SMS,.) 3,104,853 7,602,830

Largest Connected Component of reciprocal CALL network (CALL,;) | 4,295,638 | 15,787,538
Largest Connected Component of reciprocal SMS network (SMS,.;) 2,369,078 6,660,172
CALL,,; with user demographics (CALL,,;; / CALL) 4,292,227 | 15,765,196
SMS,.; with user demographics (SMS,.;; / SMS) 2,064,898 5,689,696

Table II. The distribution of mobile users’ gender and age.
| Young (18 —24) | Young-Adult (25 — 34) | Middle-Age (35 — 49) | Senior (> 49) |

female 4.77% 13.52% 16.16% 10.84%
male 5.23% 15.96% 19.73% 13.66%

The strength w;; of the edge is defined as the number of communications between v;
and v; per month. Then we extract the largest connected component from each net-
work as our experimental networks. We also generate the networks by filtering out
the nodes that don’t have demographic information. Table I lists the order and size of
the resultant CALL and SMS networks. The data does not contain any communication
content.

In this dataset, around 45% of the users are female and 55% are male. We com-
pare the demographic population distribution of mobile users with the 2008 world
population distribution, which was released by the U.S. Census Bureau international
database*. We find that both female and male users between the ages of 20 and 55 are
strongly overrepresented in the mobile population compared to the global population,
while teenagers (under 18 years old) and the elderly (aged 80 or over) are underrep-
resented. Thus in our study, we focus on users aged between 18 and 80 years old. To
simplify the notations, we use F' and M to denote the female and male users, respec-
tively. Following [Hu et al. 2007; Bi et al. 2013], we also split users into four groups
according to their ages: Young (18 — 24), Young-Adult (25 — 34), Middle-Age (35 — 49),
and Senior (> 49). The distribution of users’ gender and age is listed in Table II.

3. SOCIAL STRATEGIES IN MOBILE COMMUNICATION

Social strategies are used by people to meet their social needs that is, together with
being, having, and doing, considered among the basic human needs [Max-Neef et al.
1992]. Meeting with new people and strengthening existing relationships belong to
the category of social needs. The mobile communication data provides rich informa-
tion for discovering and characterizing human social strategies by which people build
and maintain social connections. Previous studies [Palchykov et al. 2012] show that
the strategies by which social needs are satisfied change over time, although the needs
are constant across one’s lifetime. In this section, we show how people communicate
with each other across their respective lifetime. Specifically, we investigate the in-
terplay of human communication interactions and demographic characteristics in the
perspective of micro-level network structures, including ego networks, social ties, and
social triads. We also use a null model to simulate the observations by randomly shuf-

4http://www.census.gov/idb/worldpopinfo.html
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fling users’ demographic profiles and report the statistical significance of the results
in Section 4.

3.1. Social Strategies on Ego Networks

An ego network of one person is defined by viewing himself or herself as the central
node and his or her one-degree friends as surrounding nodes [Freeman 1982]. Clearly,
one’s ego network is a sub-network of the original network. Figure 1 presents an il-
lustrative example of the evolution of one’s ego network. We first examine the charac-
teristics of the central node (ego) and then the distributions of this ego’s friends (ego
network) with respect to their demographic profiles.

Ego. We present a basic correlation analysis between network characteristics and
user demographics to examine how an individual’s gender and age influence her or his
ego social networks. In particular, we consider the following network metrics:

— Degree Centrality: the number of edges incident upon a node in the network;
— Neighbor Connectivity: the average degree of neighbors of a specific user.
— Triadic Closure: the local clustering coefficient (cc) of each user;

— Embeddedness: the degree that people are enmeshed in networks [Granovetter 1985].

) . 1 \Nu NN, |
More accurately, a user v’s embeddedness is defined as ™~ D e N V0N where N,

is the neighbors of w.

Figure 4 plots the correlations between the four network metrics and the users’ age.
From sub-figures 4(a) — 4(b), we observe that the degree and neighbor connectivity of
both female and male users achieve peak values around 22 years old, then decrease
with valleys around 38 — 40 years old. An interesting phenomenon is that before this
valley, the males have clearly higher scores on both metrics (degree and neighbor con-
nectivity), while the situation is reversed after this point.

From sub-figures 4(c) — 4(d), we see that both triadic closure and embeddedness
increase when users become older. Similar to the first two metrics, there is also a
reverse phenomenon at age 38 —40. The difference lies in that the male’s triadic closure
and embeddedness are at first smaller than the female’s, and then become larger after
the reversion point. All four network metrics are observed at a 95% confidence interval.

Ego Networks. With the ego network of each user, we study the demographic ho-
mophily on both gender and age. The principle of homophily suggests that people tend
to be connected with those who are similar to them [Lazarsfeld and Merton 1954]. It
has been extensively studied and verified in both online social networks [Leskovec and
Horvitz 2008; Lou et al. 2013] and mobile networks [Dong et al. 2013; Kovanen et al.
2013].

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.
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Figure 5 shows friends’ demographic distribution for female and male users of dif-
ferent age in the CALL and SMS networks. The X-axis represents a central user’ age
from 18 to 80 years old and the Y-axis represents the demographic distribution of that
central user’ friends, in which positive numbers denote female friends’ age and nega-
tive numbers denote male friends’. The spectrum color, which extends from dark blue
(low) to yellow (high), represents the probability of one’s friends belonging to the cor-
responding age (Y-axis) and gender (positive or negative). Interestingly, there exist
highlighted diagonal lines in each sub-figure, which suggests that people tend to com-
municate with others of similar age. In particular, the age homophily is much stronger
for people aged between 35 to 55 years old in the CALL network, and 40 to 50 years
old in the SMS network. Simultaneously, the highlighted diagonals appear in the same
gender range in both networks, i.e. females appear in the positive Y range (F) in Fig-
ures 5(a), 5(c) and males in the negative Y range (M) in Figures 5(b), 5(d), which shows
the existence of a high degree of gender homophily in mobile phone behavior.

Social Strategies. From a sociological perspective, the results in Figures 4 and 5
can be also explained by different social strategies that people use to maintain their
social connections. First, younger people (who have higher degree centrality) are very
active in broadening their social circles, while older people (who have higher triadic
closure centrality cc) tend to keep smaller but more stable connections. This finding
from large-scale networks coincides with previous survey studies that older people
have lower rates of contact than young people [Marsden 1987; Cornwell 2011]. Second,
people tend to communicate with others of similar gender and age, i.e., gender and
age homophily in mobile communications. Third, young people put increasing focus on
the same generation and decreasing focus on the older generation, and the middle-
age people devote more attention on the younger generation even at the cost of age
homophily.

3.2. Social Strategies on Interpersonal Ties

An interpersonal tie is viewed as the connection between two people, and its strength
represents the extent of closeness of social contacts [Onnela et al. 2007], such as strong
ties [Krackhardt 1992; Shi et al. 2007] and weak ties [Granovetter 1973]. In mobile

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.
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communication networks, tie strength is defined as the frequency of communications
between each pair of users [Onnela et al. 2007; Palchykov et al. 2012].

In Figure 6, we use heat maps to visualize the communication frequencies for differ-
ent demographics. Figures 6(a) and 6(e) report the average number of calls/messages
per month between two users. Figures 6(b) — 6(d) and 6(f) — 6(h) detail the analysis by
reporting the average numbers of calls/messages between two male users, two female
users, and one male and one female, respectively. Again, we discover highlighted diag-
onal lines in Figures 6(a) — 6(c), which correspond to the gender and age homophily. We
also notice that there are highlighted areas corresponding to cross-generation commu-
nications. In Figure 6(a), the color of cross-generation areas that extends from green
to yellow indicates that on average 13 calls per month have been made between people
aged 20 — 30 and those aged 40 — 50 years old. This potentially corresponds to phone
calls between parents and children, managers and subordinates, and advisors and ad-
visees, etc. These two discoveries can also be observed in Figures 6(e) — 6(g) in the SMS
network but not as obvious as in the CALL network.

In addition, we observe that the cross-generation phone call communications be-
tween female users seem to be much more frequent than those between male users (Cf.
Figures 6(b) and 6(c)). Moreover, from Figures 6(d) and 6(h), we observe a highlighted
yellow area between people aged 18-34 years old, which means that cross-gender com-
munications are more frequent than those between users of the same gender. A similar
observation has also been reported in the MSN network [Leskovec and Horvitz 2008].

Social Strategies. The social strategies unveiled from Figure 6 can be summarized as
follows. First, frequent cross-generation interactions are maintained to bridge age gaps
in both phone call and text messaging channels. Second, opposite-gender communica-
tion interactions among younger people are much more frequent than those between

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.



0:10 Y. Dong et al.

~
o

=]
@
o

Max Age of FMM
o
o

Max Age of MMM

N

o
B g @

Max Age of FFM
w B (9 (2]
o o

N
o
o

S

w

=]
=)
o

n
o
n
o

n
o

0
20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 x10°
Min Age of FFF Min Age of FFM Min Age of FMM Min Age of MMM

(a) Triad FFF in CALL (b) Triad FFM in CALL (c) Triad FMM in CALL (d) Triad MMM in CALL

Max Age of FFM
B o (o2}

Max Age of FMM

Max Age of MMM
o (2]

30

0
20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 20 30 40 50 60 70 80 x10°
Min Age of FFF Min Age of FFM Min Age of FMM Min Age of MMM
(e) Triad FFF in SMS (f) Triad FFM in SMS (g) Triad FMM in SMS (h) Triad MMM in SMS

Fig. 7. Social triad distribution in the CALL and SMS networks. X-axis: the minimum age of three
users in a triad. Y-axis: the maximum age of three users. The spectrum color represents the distributions.

same-gender users. However, when people reach the 35 years of age, reversely, same-
gender interactions are more frequent than those between opposite-gender users.

3.3. Social Strategies on Triads

A triad is one of the simplest groupings of individuals in social networks [Easley and
Kleinberg 2010]. Three individuals form a triad if and only if each pair of them are
friends. Herein, we investigate how male and female users maintain their social triadic
relationships across their lifetime.

In Figure 7, the heat map visualizes the distribution of the minimum age (X-axis)
and maximum age (Y-axis) of three users in a closed social triad structure. Figures
7(a)/7(e) and 7(d)/7(h) show the same-gender triads: ‘FFF’ and ‘MMM’, and Figures
7(b)/7(f) and 7(c)/7(g) present the age distribution for users in opposite-gender triads:
‘FFM’ and ‘FMM’. Clearly, the triadic relationships are observed in all four kinds of
gender-triads (i.e., ‘FFF’, ‘MMM’, ‘FFM’ and ‘FMM’) among young people by high-
lighted yellow areas at the left-bottom corners of each sub-figure. When entering
middle-age (> 35 years old), people only maintain the same-gender triadic relation-
ships in mobile communications, which is revealed by the yellow diagonal lines in
Figures 7(a)/7(e) and 7(d)/7(h). The opposite-gender triadic relationships vanish when
people pass 35 years old observed in Figures 7(b)/7(f) and 7(c)/7(g). The instability of
opposite-gender triadic relationships and the persistence of same-gender triadic rela-
tionships across one’s lifetime are novel discoveries and reveal the dynamics of human
social strategies across their lifespan.

Furthermore, the cross-generation triadic relationships are found in the left-middle
light areas in each sub-figure. These left-middle light areas are almost isolated with
other highlighted areas in each sub-figure, then we are curious about the distribution
of the middle age of three users in one social triad. Our further study shows that the
middle age in these triads are similar to either the minimum age (60%) or the max-
imum age (40%) among them, which means there are around 60% cross-generation

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.



User Modeling on Demographic Attributes in Big Mobile Social Networks 0:11

communication triads are composed of two youths and one middle-age people, for ex-
ample, 25-25-45 years old respectively in a triad, the remaining 40% are two middle-
age and one young people, for example, 20-40-40 years old, and no triads like 20-30-40
years old are observed in this nationwide communication networks.

Social Strategies. The dynamics of gender differences on social decisions indicate
the evolution of social strategies used by people to meet their social needs. People ex-
pand both the same-gender and opposite-gender social circles during the dating active
period. However, people’s attention to opposite-gender groups quickly disappears af-
ter entering into middle-age, and the insistence and social investment on same-gender
social groups last for a lifetime.

3.4. Summary

According to our comprehensive analysis on the interplay of demographic profiles and
mobile communications, we unveil striking gender- and age- based networking dif-
ferences, which reflect the dynamic social strategies that evolve as a function of the
balance between different social needs across lifespans. In summary, we provide the
following social phenomena relating to mobile communications:

— Figure 4 demonstrates that younger people are active in broadening their social con-
nections, while older people have the tendency to maintain smaller but more closed
connections.

— Figure 5 confirms demographic homophily, that being said, people tend to interact
with others with similar gender and age in both phone call and text messaging chan-
nels.

— Figure 6 shows that cross-gender social relationships exhibit more frequent com-
munications than the same-gender ones, and the cross-generation interactions are
maintained to pass the torch of family, workforce, and human knowledge from gen-
eration to generation in social society.

— Figure 7 unveils that people tend to expand their social connections with females
and males alike during younger and more dating-active period, and put more social
investment on maintaining same-gender social groups after entering into middle-age.

— In addition, the gap between the younger and older people in text-messaging channel
(e.g., Figure 7(e)) is larger than that in phone calls (Figure 7(a)), while the difference
between males and females (e.g., Figure 6(b) vs. 6(c)) in phone-call channel are more
significant than that in messaging communications (Figures 6(f) vs. 6(g)).

4. THE NULL MODEL IN NETWORKS

We validate the statistical significance of the social strategies observed in the CALL
and SMS networks in Section 3 by using a null model. The idea of the statistical test
is to compare the demographic-based observations x from empirical data to those {z}
provided by the null model, wherein the demographic profiles of users are randomly
shuffled [Kovanen et al. 2013; Dong et al. 2015b]. On the null model, we first ran-
domly assign the demographic profiles of the users on the underlying communication
networks, and then observe the social strategies that are derived from the randomly
allocated user demographics. We simulate the random process 10,000 times and get
the mean p(%) and standard deviation o(Z) of the observations {Z} on the null model.
For example, we use four data points selected from Figure 5 to illustrate the statistical
test, that is, two points (X=20, Y=60) and (X=20, Y=-20) from Figure 5(a) and 5(b),
respectively. Figure 8 reports the histograms of shuffled results {Z} of the four points.
First, it is clear that the true values x (blue lines) observed from Figure 5 largely fall
out of the shuffled distributions (histogram plots). Further, we can see that the shuf-
fled distributions are close to the fitted normal distributions (red lines). Accordingly,
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we use z-score to examine the numerical gap between the empirical data = and the
randomly shuffled results {Z} on the null model [Sprinthall 2011].

z(x) = it i S22 'tf(j)

o(Z)

A z-score of 0 indicates that there exists no difference between empirical data and the
null model. A positive (negative) z-score represents that the empirical data is over-
(under-) represented than expected by chance. In specific, |z(z)| > 3.3 (corresponding
to p-value < 0.001) indicates that the observation from the empirical data is extremely
statistically significant.

The statistical tests are conducted for all the social strategies observed on ego net-
works, social ties, and social triads in mobile phone call and text messaging behavior.
We associate each observation figure of the social strategies presented in Section 3
with the shuffled results and z-score plots. Specifically, the results on ego networks
are shown in Figures 9 and 10. The shuffled results and z-scores on social ties in the
CALL and SMS networks can be found in Figures 11 and 12, respectively. Figures 13
and 14 present the values of shuffled means and z-scores of the social strategies on
social triad observed in both the CALL and SMS networks, respectively.
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From the figures, we can see that there are large differences between the heatmaps
of the observations (data) and those of the means of 10,000 simulating results (shuffle).
Moreover, we find that the color of the areas we are interested in from each z-score plot
tells that |z(x)| > 3.3. That being said, each social strategy we observed in the mobile
communication networks is (extremely) statistically significant.
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5. DEMOGRAPHIC PREDICTION PROBLEMS

Let G = (V, E,Y, Z) denote the undirected and weighted mobile network, where V is
aset of |V|] = N users and £ C V x V is a set of communication edges (CALL or
SMS) between users. Each user v; € V is associated with demographic information,
i.e., gender y; € Y and age z; € Z. We further define an attribute matrix X, where
each row x; represents an |x;| dimensional feature vector for user v;. Given this, we
formalize our problem as follows.

PROBLEM 1. Demographic Prediction: Given a partially labeled network G =
(VE VU E YE ZE) and the attribute matrix X, where V' is a set of users with labeled
demographic information Y and Z', and VY is a set of unlabeled users, the objective
is to learn a function

f G = (VvaU’EvyvaL)7X_> (YU7ZU)

to simultaneously predict users’ gender and age, where YU, ZU are the demographic
information for the unlabeled users V'V.

Different from previous work on demographic prediction [Bi et al. 2013; Hu et al.
2007], where users’ gender and age are inferred by modeling P(Y|X) and P(Z|X) sepa-
rately (see Figure 15), our problem here is to model P(Y, Z|G, X) for the joint inference
of users’ gender and age. Specifically, we leverage not only the correlations between X
and Y/Z but also the structural correlations among nodes and interrelations between
gender Y and age Z. The motivation here comes from the fact that there exist strong
network effects and demographic interrelations in human communication behavior,
which was demonstrated in Section 3. For example, a 20-year-old female’s behavior is
distinct from not only a 20-year-old male’s, but also from a 50-year-old female’s.

In addition, there are usually multiple mobile operators in telecommunication
market—for example, the two mobile operators in Figure 3. A mobile operator O; (e.g.,

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.



0:16 Y. Dong et al.

gender  features age features network gender age features
@ Yi|]| %
@‘ % ;

Y X gh |z X oh @ ) nllzl] x
@ Ya Zy
. @ Ys || %s

P(Y | X) P(Z | X) G \‘/P(Y.X\G,X)

Fig. 15. An illustration of the proposed demographic prediction problem. In addition to model the
correlations between labels (Y or Z) and features (X) of each node, we propose to further model the structural
correlations among different nodes (G) as well as the interrelations between one node’s two labels, that is,
Y and Z.

AT&T) could have the communication records of its users and also the communication
logs between its users and users of another operator O, (e.g., Verizon) [Dong et al.
2015]. It would be very useful for the operator O; to have the demographic profiles of
users of its competitor O, for business intelligence and precision marketing, such as
acquiring new users from and preventing customer churning to competitors.

To solve this problem, we define the concept of coupled networks and formulate the
problem of coupled network demographic prediction across multiple operators in mo-
bile communication.

Definition 5.1. Coupled Networks: Given a source network G° = (V°, ES) and
a target network GT = (VT ET), they compose coupled networks if there exists a
cross link ¢;; with one node v; € V° and the other node v; € V7. The cross network
GY = (VY EY) is a bipartite network containing all the cross links in the coupled
networks.

Figure 3 shows a typical example of coupled networks with the left network of mobile
operator O; as the source network G° and the right network of another mobile oper-
ator O, as the target network GT. The links between these two networks represent
the communications between users belonging to these two different mobile operators,
which, with their linked nodes in G° and G7, constitute the cross network G°.

PROBLEM 2. Coupled Network Demographic Prediction: Given the source net-
work G° with its users’ demographic profiles Y, Z% and the cross network G¢ in cou-
pled networks G = (G°,GT,GY), the task is to find a predictive function:

f:G% =% E%Y®, 2%),G° = (Vo VT EY) —» (YT, 27)

where YT and Z7 are the set of demographic labels—gender and age—of users V' in
the target network G'.

The difference between the coupled network demographic prediction and Problem
1 lies in the cold start of network structures between target users in Problem 2. For
example, in Figure 3, the triangle structures (vg, v7, vs), (v1, v, v7) can not be observed
by the operator O;, making it impossible to leverage the correlations built upon these
structures in the prediction task. The real-world and yet challenging setting of the
coupled network demographic prediction can be directly applied by a mobile operator
to infer the demographic profiles of its competitors’ users, facilitating the acquirement
of new users from competitor operators.
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We treat users’ gender as a binary random variable, i.e., Female or Male, and users’
age as a four-class variable by splitting users’ age into the four groups mentioned
above [Hu et al. 2007; Bi et al. 2013], i.e., Young (18 — 24), Young-Adult (25 — 34),
Middle-Age (35 — 49), and Senior (> 49). The distribution of users’ gender and age is
listed in Table II.

6. THE WHOAMI FRAMEWORK

Leveraging the insights gleaned from our network analysis in Section 3, we develop
a unified model to capture not only the correlations between users’ communication
behaviors and demographic profiles but also the interrelations among users’ different
demographic attributes. In our previous work [Dong et al. 2014], the proposed DFG
(Double Label Factor Graph) model is only capable of handling the interrelations be-
tween two dependent variables (e.g., gender Y and age 7). In this extension, we gener-
alize the WhoAmI method to a Multiple Label Factor Graph Model (MFG). The MFG
is general to model the interrelations among multiple (more than two) dependent vari-
ables. To illustrate the way that MF'G captures the interrelations between multiple (>
2) labels, we assume that in addition to one’s gender Y and age Z, each user is also
associated with another demographic attribute S (e.g., income). However, notice that
in the mobile data only two demographic attributes—gender and age—are available.
Therefore, in Section 7 we use the proposed approach to predict these two attributes.

To infer users’ demographic attributes in coupled networks, we propose a variant of
the Multiple Label Factor Graph—CoupledMFG—that is able to address the unique
challenges presented in this task. To handle large-scale networks, we further develop
a distributed learning algorithm.

6.1. Multiple Label Factor Graph

We define an objective function by maximizing the conditional probability of users’
gender Y, age Z, and S given their corresponding attributes X and the input network
structure G, i.e., Py(Y, Z, S|G,X). The factor graph [Kschischang et al. 2001] provides a
way to factorize the “global” probability as a product of “local” factor functions, which
makes the maximization simple, i.e.,

X,G|Y,Z,S)P(Y, Z,5)
PX, Q)
X H P(X’L‘yhzlasl) H P(YC7Z(17SC)

v; €V ceG

Py, 7,5G,%) = I ~ P(Y.Z S| PXIY.Z,8) ()

where P(Y,, Z., S.) denotes the probability of labels given the network structure ¢ and
P(x;|yi, 2, 8;) is the probability of users’ attributes x; given the labels y;, z;, and s;.

Our proposed model consists of three kinds of factor functions. The first one is an
attribute factor f(y;, z;, s;, X;) for capturing correlations between users’ demographics
and communication attributes. The second one is a dyadic factor ¢(y., z.,s.) for mod-
eling correlations between users’ demographics and their direct relationships in ego
networks, where Y. in Eq. 1 is represented as y. (y; and y;), Z. is denoted by z. (z; and
z;), and S by s. (s; and s;) iff e;; € E. The third one is a triadic factor A(y., z.,s.) for
correlating users’ demographics and triadic relationships in their ego networks. Sim-
ilarly, y. refers to y;,y;,yr, while z. refers to z;, z;, z;, and s, is s;,s;, s, when three
users v;, v;, v, form a closed triangle structure c;;i, i.e., e;;, e, €jx € E.

Therefore, the joint distribution can be further factorized as:

P(Y, Z,5|G,X) = H T (Wi» i, 86, %) ¥ H [9(Ve,Ze,Se)] X H (yerZe,sc)]  (2)

v, €V ei; €EE cijk€G
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Fig. 16. An illustration of the proposed model. y , z. and s. indicate the gender, age, and newly added
label of the user v;. ; denotes communication attributes of the user v; extracted from the mobile network
G. f(Yi,2i,Si,%Xi), 9(Ye,Ze,se), and h(ye, zc,sc) respectively represent attribute factor, dyadic factor, and
triadic factor in the proposed model.

Figure 16 shows an illustration of our proposed model, which consists of two layers
of nodes. The bottom layer contains random variables and the upper layer contains
the three kinds of factors introduced above. The joint distribution over the whole set
of random variables can be factorized as the product of all factors. Specifically, we
instantiate the three factors as follows.

Attribute Factors. We design the factor f(y;, 2, s;, x;) to represent the correlation be-
tween user v;’s demographics and her/his network characteristics x;. More specifically,
we instantiate the factor by an exponential-linear function:

1
Wiy 2is 86, %) = W exp{ay,zs, - Xi} (3)

where « is one parameter of the proposed model, and W, is a normalization term.
For each (y;, 2, si), ay,z,s, 18 an |x|-length vector, where the k-th dimension indicates
how z;;, distributes over (y;, z;, s;). For example, let’s say x;; represents the degree
of user v;. This factor can capture the fact that people with different demographic
profiles have different network properties shown in Figure 4. Traditional probabilistic
graphical models can only model the correlations between features and one single type
of dependent variable, while our proposed model captures how the features jointly

distribute over multiple dependent variables.

Dyadic Factors. We next define the dyadic factor ¢(y., z.,s.), where ¢;; € E, to rep-
resent the correlation between user v; and v;’s demographic information. Specifically,
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we have

wo exp{B1 - 91(yi )}
77— exp{fBa - g5 (i, zi)}
ez

g(ye,ze,se> = e (4)
W<1’~14 exp{ﬁl4 . 9/14(23, S,L)}
W:ls exp{f1s5 - 915(5i,55)}

where f3, is the model parameter for this type of factor, g,(-) is defined as a vec-
tor of indicator functions, and W, is the normalization term. We can enumerate

in total C? = 15 different combinations of each pair of demographic variables from
(Y, Y4, 2i5 %, 8i, $;). The intuition behind this is that v;’s friends’ demographics dis-
tribute differently by varying either v;’s own age or gender or income, as Figure 5
suggests.

Triadic Factors. We finally define the triadic factor i(y,, z,s.) to represent the cor-
relation among the demographics of social triads, where ¢ = {v;, v;, vg|eij, €k, eix € E}
indicates the closed triangle structure in GG. More specifically, we have
wo exp{y1 - b (yi 5. ue) }
wo, exp{2 - Mo (yi yj, i)}
h(YC7 Zc, Sc) =94 (63)
! eXp{’YSZX . héB(Sia Sjs Zk)}

w.
eXp{’YS4 : hé4(57ﬁ Sjs Sk)}

€83
1

W,

€84

where % (-) is the vector of indicator functions and W, is the normalization term
similar with W, . There are Cj different kinds of three-variable enumerations from
(Y, Yjs Yk Zis 255 2k Siy S5, Sk). We use these triadic factors to model the distributions of
user demographics within a closed social triangle (see details in Figure 7).

Finally, incorporating Eqgs. 3, 4, 5 into Eq. 2, we define the objective function as the
log-likelihood of the proposed model as:

15 84
O, 8,7) = Y aysXit D D Bogh()+ D D vhi() —logW  (6)

v; €V eij€E p=1 cijk€G q=1

where W = W,W_W, is the global normalization term, W, = Hiizl We,, and W, =
Hfj =1 ch .

The technical novelty of the proposed model is that it considers different types of
labels in a unified framework, which differentiates our model from traditional clas-
sification models. By considering three types of labels in this special case, the main
advantage is that our model can characterize the interrelations between different de-

mographic labels and the structural correlations between different users as well as
correlations between labels and features.

6.2. Feature Definition

Given a network with labeled and unlabeled users, the goal is to infer unlabeled users’
demographic information, which is in accordance with the real-world application sce-
narios. There are two types of features designed in our experiments, namely nonstruc-
tural attribute features and structural features. Specifically, given an ego network with
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one central user v and her/his direct friends, we extract three kinds of attribute fea-
tures for this central user v as follows:

Individual attributes are extracted based on the network topological properties dis-
cussed in Section 3.1. It includes the degree, neighbor connectivity, clustering coeffi-
cient, embeddedness, and weighted degree (#calls or #messages) of each node.

Friend attributes are used to model the demographic distribution of v’s direct friends
in her/his ego network, including the number of connections to female, male, young,
young-adult, middle-age, and senior friends. In the prediction setting, not all friends
of the central user v are labeled with gender or age information, so we extract the
friend attributes only based on her/his labeled friends.

Circle attributes refer to the triadic demographic distribution of v’s ego network.
Because we aim to infer the central user v’s demographics, we count the numbers of
different gender triads, i.e., ‘FF-v’, ‘FM-v’, ‘M M-v’, and different age-group triads.
Let A/B/C/D denote the young/young-adult/middle-age/senior age-groups, respectively.
There are in total ten kinds of triads based on age-groups: ‘AA-v’, ‘AB-v’, ‘AC-v’, ‘AD-v’,
‘BB-v’ ‘BC-v’ 'BD-v’, ‘CC-v’, ‘CD-v’, ‘DD-v’.

Table III lists 24 nonstructural attribute features used in our models. Notice that
friend and circle attributes can only be extracted from v’s labeled friends. These three
types of attribute features—individual, friend, and circle attributes — are captured by
the attribute factor in our MFG model (Cf. Eq. 3).

In addition, the structural features, captured by the dyadic factor (Cf. Eq. 4) and
triadic factor (Cf. Eq. 5), are designed to model the demographic distributions over
edges and triangles with both labeled and unlabeled users, which forms one of the
advantages of the proposed factor graph-based model. Together with nonstructural
friend attributes, structural features covered by dyadic factors form friend features.
Similarly, circle features are composed of nonstructural circle attributes and triadic
structural features.

6.3. WhoAml Learning and Inference

The goal of learning the WhoAmI method is to find a configuration for the free param-
eters § = {a, 8,7} that maximize the log-likelihood of the objective function O(6) in
Eq. 6 given by the training set, i.e., 6* = argmax O(6).
Learning. We first introduce how we learn the model in a single-processor configura-
tion, and then explain how to extend the learning algorithm to a distributed one for
handling large-scale networks.

To solve the optimization problem, we adopt a gradient decent method (or a Newton-
Raphson method). Specifically, we derive the objective function with respect to each
parameter with regard to our objective function in Eq. 6.

80(6)

5 — Bl > xil = Ep vzsxl Y xi]
v; €V v;EV
00(0 p /
78; ) _ E| Z 9 () = Ep,v.z.s1x.0)] Z 9 ()l (7
e;;€E ei;EE
00(6
a( ) — g Y WOI=Eewzsxal Y 1)
v C,;jkEG CijkEG

where in the first Equation of Eq. 7, E[}_, . x;] is the expectation of the summation
of the attribute factor functions given the data distribution over Y, Z, S, and X in
the training set, and Ep_ (v z 5 x) [Zmev x;] is the expectation of the summation of the
attribute factor functions given by the estimated model. The other expectation terms
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Table IlI. Definition of nonstructural attribute features modeled by the attribute factor in Eq. 3.

‘ Attribute Type ‘ Name ‘ Description
degree number of contacts
neighbor connectivity | average degree of neighbors
Individual attributes | clustering coefficient | local clustering coefficient
embeddedness the degree that people are embedded in networks
weighted degree number of communications (#calls or #messages)
#female-friends number of female contacts
#male-friends number of male contacts
Friend attributes #young-friends . number of young contacts
#young-adult-friends | number of young-adult contacts
#middle-age-friends number of middle-age contacts
#senior-friends number of senior contacts
#v-FF-triangles number of F'F-v triangles in v’s ego network
#v-FM-triangles number of F'M-v triangles in v’s ego network
#v-MM-triangles number of M M-v triangles in v’s ego network
#v-AA-triangles number of AA-v triangles in v’s ego network
Circle attributes #v-AB-triangles number of AB-v triangles in v’s ego network
A: young #v-AC-triangles number of AC-v triangles in v’s ego network
B: young-adult #v-AD-triangles number of AD-v triangles in v’s ego network
C: middle-age #v-BB-triangles number of BB-v triangles in v’s ego network
D: senior #v-BC-triangles number of BC-v triangles in v’s ego network
#v-BD-triangles number of BD-v triangles in v’s ego network
#v-CC-triangles number of CC-v triangles in v’s ego network
#v-CD-triangles number of C D-v triangles in v’s ego network
#v-DD-triangles number of D D-v triangles in v’s ego network

have similar meanings in the other two equations. As the network structure in the
real-world may contain cycles, it is intractable to estimate the marginal probability in
the second terms of Eq. 7. In this work, we adopt Loopy Belief Propagation (LBP) [Mur-
phy et al. 1999] to calculate the marginal probability of P(Y, Z,S) and compute the
expectation terms.

The learning process then can be described as an iterative algorithm. Each iteration
contains two steps: First, we call LBP to calculate marginal distributions of unknown
variables P, (Y, Z, S|X). Second, we update «, 8, and v with the learning rate n by Eq.
8. The learning algorithm terminates when it reaches convergence.

80(0)

enew - eold + n-

Prediction. With the estimated parameter 0, we can now assign the value of un-
known labels Y, Z, S by looking for a label configuration that will maximize the objec-
tive function, i.e. (Y*,Z*,5*) = argmax O(Y, Z, S|G,X, ). In this paper, we use the
max-sum algorithm [Kschischang et al. 2001] to solve the above problem.

Complexity. The complexity of the learning algorithm at each iteration is O(|]V|- Q +
|E|-Q?+|C|-Q?), where |V|, |E|, |C| are the numbers of users, edges, and triads in the
graph, respectively, and @ is the number of classes of multiple labels. Specifically, ) =
Y| x |Z] x |S| in the presented model, where |Y| = 2 is the number of gender labels—
male and female, |Z| = 4 is the number of age labels—young, young-adult, middle-age,
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Fig. 17. An illustration of the master-slave learning scheme.

and senior, and |S| is the number of income labels. Therefore, when learning over only
gender and age in our prediction experiments, @ is equal to |Y| x |Z|, that is 8.

6.4. Distributed Learning

We further leverage a distributed framework [Tang et al. 2016; Tang et al. 2013] to
scale up our model to handle these large-scale mobile networks. Our distributed learn-
ing algorithm utilizes a Message Passing Interface (MPI) framework, by which we can
split the network into small parts and learn the parameters on different processors.
As most computing time is consumed in the first step of our learning algorithm intro-
duced above, we speed up this learning process by distributing multiple ‘slave’ com-
puting processors for this step. The second step is calculated in the ‘master’ processor
by collecting the results from all ‘slave’ processors on the first step. An illustrative flow
of the two steps can be found in Figure 17.

Specifically, the master-slave based distributed learning framework [Tang et al.
2016; Tang et al. 2013] can be described in two phases. At the first phase, the large-
scale network G is partitioned into K sub-networks G4,---,Gyg, -+ ,Gg of balanced
size, and the K sub-networks are distributed to K ‘slave’ processors. At the second
phase, we iteratively learn the parameters in two steps. At each iteration i, first, each
processor can compute the local belief on its sub-network G according to Eq. 9.

M () o fFxs ) T mati(a) ©)

u€el'(t)

where x; denotes the nodes in the local factor graph, I'(¢) denotes x;’s neighbors, and
mﬁit denotes the belief (message) propagated from node Y., to node x;, which is defined

as the following equation.

ma () 0 D Ot )9 s X)W O xas ) [ mEiat () (10)
Xu sel(u)\t

wherein the message will be normalized. Second, the ‘master’ processor collects all
local results obtained from different subgraphs and computes the marginal probability
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P(x:|-) according to Eq. 11, and updates the parameters according to Egs. 7 and 8.

K
P'(xl) =0y M (x) (11)
k=1

where o is the normalization constant. This phase is repeated until convergence.

There are three notes for our model implementation. In order to achieve the balance
among different slaves, we partition the nationwide mobile network into K subgraphs
of roughly equal size. The second one is that we first extract all features for each user
from the original full network. We then split it into subgraphs that are handled by
each ‘slave’ processor.

The third point worth noting is that a structural factor has to be eliminated in the
distributed learning framework if it is defined over several nodes that belong to differ-
ent subgraphs—for example, the triangle structures (v, v, v3) and (v1, v3, v4) in Figure
17. To address this issue, we propose to use virtual nodes [Tang et al. 2016; Tang et al.
2013] to construct the broken structural factors. For example, to complete the triad
factor over the triangle (v, v2, v3) that would be ignored in G; in Figure 17, we design
a virtual node v} in G;. In doing so, the factor graph over G; will capture the struc-
tural correlations of the three users’ demographic information. As the completion of
the triangle (v1,v2,v3) in Gy, it will not be constructed in the other subgraph, that is,
G3. With that said, if three nodes of a triangle are distributed into three subgraphs,
such as (v1,vs,v4), one of the three involved subgraphs will be randomly selected to
complete the triangle and leave the other two ignored.

6.5. Coupled Network Learning

Finally, we design a variant of the WhoAmI method to address the challenges in cou-
pled network demographic prediction. As illustrated in Section 5, the problem faces
two unique challenges. First, the missing of the target network structure makes it im-
possible to define triadic factors h(-) over three target users, such as the triangle struc-
ture (vg, v7,vs) in Figure 3. Second, users’ individual features across different mobile
operators are asymmetric, due to the sparsity of the target network. For example, the
connections between user v; and users from both the same operator O; (vs,v3,v4, v5)
and the other operator O, (vg, v7) are observed for counting v,’s degree centrality, while
for user vg in O, the associations with O;’s users (v, v4) can be observed, and those
with target users (v7, vg) are not observable. In this context, the individual features of
source and target users follow different distributions, making it infeasible for a super-
vised learning framework.

In light of these issues and our previous work on coupled link prediction [Dong et al.
2015], we propose the coupled version of the WhoAmI method—CoupledMFG. By tak-
ing the coupled mobile networks as the input of a factor graph model, we have the
following joint distribution:

P(Y,2,51G°,G°X) = [[ Fwizisix)x [ Wiz, s,%)

v; VS v, VT

< ] [6°ezes)l x [ 19 (e zerse)] (12)
eijEES eijGEc

< [I P%(yezesdlx [ B (e 2ze s0)]

cijkE€EGS cijkEGE

This joint distribution factorizes all factors over the available structures in coupled
networks. The first two terms model the attribute factors for users in source and tar-
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ALGORITHM 1: Distributed CoupledMFG Learning Algorithm.

Input: The source network G°, the cross network G, the node set V7 of the target network
G7, and the learning rate n
Output: Parameters 6 = (o, a”, 3,7)

Master initializes 6 < 0;
Master constructs the coupled factor graph according to Eq. 12 with G, G, V7T
Master partitions the input mobile network into K subgraphs of relatively equal size;
Master completes the broken structural factors with virtual nodes;
Master forwards all subgraphs to slaves [Communication];
repeat
Master broadcasts 6 to Slaves [Communication];
fork=1— K do
Slave k computes local belief according to Egs. 9 and 10;
Slave k sends the local belief to Master [Communication];
end

Master calculates the marginal distribution for each variable according to Eq. 11,
Master calculates the gradient for each parameter according to Eq. 7;

Master updates the parameters according to Eq. 8;

until Convergence;

get networks, respectively. Recall that one of the challenges is the asymmetry of users’
individual attributes across these two networks, making it desired to separately model
these two groups of attribute factors f°(-) and f7(.). The remaining four terms cap-
ture the structural correlations in coupled networks. Specifically, the third and fourth
terms model the dyadic correlations, and the fifth and sixth terms model the triadic
correlations in the source and cross networks, respectively. Further, all the latent vari-
ables in ¢°(-) and h°(-) are labeled, while only partial of latent variables in ¢“(-) and
h¢(-) are known to the model. Take the triadic factor h(-) over the triangle (vy,v4,vs)
in Figure 3 as an example, user vg’s demographic attributes are not available—in fact,
they are the objective of the prediction model—and the demographics of users v; and
vy are labeled for the learning algorithm.

One necessary question arises: Do the demographic correlations over edges ¢(-) and
triangles h(-) follow the same distribution in source and cross networks? Our examina-
tion shows that there exists no significant distinction on the demographic distributions
between source and cross networks. With that said, the semi-supervised nature of the
proposed WhoAmI method enables the joint modeling of structural factors (¢(-) and
h(-)) across source and target networks. To do so, we model the structural factors into
the same parameter space. Specifically, we have the following log-likelihood objective
function for the CoupledMFG model.

S S T T
(9(0476,7)2 Z ayizisixi + Z ayizisixi

v, €VS v, €VT

15 84
X B D GO D () —logW (13)
p=1  e;;€ESUEC q=1¢;;,€GSUGC

where the two different parameters o® and o’ are designed to separately model the
attribute factors in source and target networks, and on the other hand, both the param-
eters 8 and v are used to simultaneously model the dyadic and triadic factors across
source and cross networks. In doing so, the CoupledMFG model is enabled to handle
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the two challenges in coupled network demographic prediction—the sparseness of the
target network and as a result, the asymmetry of individual features in source and
target networks.

The distributed learning algorithm for CoupledMFG is presented in Algorithm 1.
In the algorithm, we also mark the communications between Master and Slaves. The
learning algorithm will assign the target users (unlabeled) with demographic labels
that maximize the marginal probabilities.

7. EXPERIMENTS

We present the effectiveness and efficiency of our proposed WhoAmI method on demo-
graphic prediction by various experiments. The code used in the experiment is publicly
available®.

7.1. Experiment Setup

Data and Evaluation. We use two large-scale mobile networks, CALL and SMS, to
infer users’ gender and age. Detailed data information is introduced in Section 2. To
infer user demographics effectively for mobile operators, we only consider active users
who have at least five contacts in two months. After filtering out non-active users, there
are 1.09 million and 304,000 active users in the CALL and SMS networks, respectively.
We repeat the prediction experiments ten times, and report the average performance in
terms of weighted Precision, Recall, and F1-Measure. We consider weighted evaluation
metrics because every class in female/male or young/young-adult/middle-age/senior is
as important as each other.

All code is implemented in C++, and prediction experiments are performed in a
server with four 16-core 2.4 GHz AMD Opteron processors with 256GB RAM. We use
the speedup metric with different numbers of computing cores (1-16) to evaluate the
scalability of our distributed learning algorithm.

Comparison Methods. We compare our proposed WhoAmI method that can capture
the interrelation between two types of labels (gender and age) with different classifica-
tion algorithms, including Logistic Regression (LRC), Support Vector Machine (SVM),
Naive Bayes (NB), Random Forest (RF), Bagging (Bag), Gaussian Radial Basis Func-
tion Neural Network (RBF), and Factor Graph Model (FGM). For LRC, NB, RF, Bag,
RBF, we employ Weka® and use the default setting and parameters. For SVM, we use
liblinear”. For FGM, the model proposed in [Lou et al. 2013] is used. Note that our
proposed WhoAmI method is equal to FGM if we do not consider the interrelations be-
tween gender and age. In addition, other types of models have been used for capturing
interaction effects from data, such as hierarchical multi-level models [Gelman and Hill
2006; Raudenbush and Bryk 2002]. However, rather than detecting and modeling the
nested structures, the goal of this work is to demonstrate the effects of dyadic and tri-
adic correlations between users’ demographic attributes. Therefore, those models are
not considered in the experiments.

For all comparison methods, we use the same unstructured features (individual,
friend, and circle attributes) introduced in Feature Definition of Section 6.2. For the
graphical models, FGM and WhoAml, the structural features (dyadic and triadic fac-
tors) are further used to model user demographics on network structure. The major
difference between our WhoAmI method and the FGM model is that WhoAmlI can

5http://arnetminer.org/demographic
Shttp://www.cs.waikato.ac.nz/ml/weka/
Thttp://www.csie.ntu.edu.tw/ cjlin/liblinear/

ACM Transactions on Information Systems, Vol. 0, No. 0, Article 0, Publication date: 2017.



0:26 Y. Dong et al.

Table 1V. Demographic prediction performance by weighted Precision, Recall, and F1-Measure.

Network | Method - Gender Age

wPrecision | wRecall | wF1-Measure || wPrecision | wRecall | wF1-Measure

LRC 0.7327 0.7289 0.7245 0.6350 0.6466 0.6337

SVM 0.7327 0.7287 0.7242 0.6369 0.6463 0.6273

NB 0.7222 0.7227 0.7222 0.6246 0.6224 0.6223

CALL RF 0.7437 0.7310 0.7415 0.6382 0.6482 0.6388

Bag 0.7644 0.7648 0.7643 0.6607 0.6688 0.6592

RBF 0.7283 0.7275 0.7252 0.6194 0.6272 0.6218

FGM 0.7658 0.7662 0.7659 0.6998 0.6989 0.6935

WhoAmI 0.8088 0.8076 0.8063 0.7266 0.7140 0.7132

LRC 0.6766 0.6758 0.6689 0.6702 0.6890 0.6630

SVM 0.6749 0.6750 0.6690 0.6654 0.6884 0.6607

NB 0.6231 0.6655 0.6603 0.6563 0.6588 0.6570

SMS RF 0.6399 0.6749 0.6757 0.6623 0.6775 0.6598

Bag 0.6905 0.6918 0.6901 0.6907 0.6987 0.6791

RBF 0.6712 0.6592 0.6468 0.6295 0.6640 0.6356

FGM 0.7132 0.7138 0.7133 0.7154 0.7154 0.7059

WhoAmI 0.7589 0.7549 0.7507 0.7409 0.7303 0.7337

capture not only the structural correlations between different users, but also the inter-
relations between two dependent variables of each user, i.e., gender and age.

7.2. Experiment Results

We report the demographic prediction performance for different methods in the CALL
and SMS networks. In prediction experiments, we use 50% of the labeled data in each
network as training set and the remaining 50% for testing.

Predictive Performance. Table IV shows the prediction results of different algo-
rithms on the four prediction cases, i.e., gender and age predictions in the CALL and
SMS networks, respectively. Clearly our WhoAmI method yields better performance
than the other alternative methods in all four cases. The Bag method achieves the
best prediction results among all non-graphical methods. The FGM model outperforms
a series of non-graphical algorithms by modeling the correlations among structured
nodes via dyadic and triadic factors. The WhoAmI method outperforms FGM by fur-
ther leveraging the interrelations between users’ gender and age. In terms of weighted
Precision, Recall, and F1-Measure, WhoAmlI achieves up to 10% improvements com-
pared with the baselines for the prediction of users’ gender and age. As for Accuracy,
the WhoAmI method can infer 80% of the users’ gender in the CALL network and 73%
of the users’ age in the SMS network correctly. Finally, we observe that the CALL net-
work can reveal more users’ gender information than the SMS network, as the overall
performance of gender prediction in CALL is about 5% higher than that in SMS. How-
ever, predicting age from text messaging behavior is relatively easier than predicting
it from phone call communications. The reason can be reasoned from the discoveries
in Section 3, where we find that the difference on the usage of text messages between
the young and senior people is more strong than that in phone call usage, resulting the
better performance in age prediction in SMS than CALL, while the gender homophily
in phone calls is more obvious than in messages, leading to the advantage when pre-
dicting gender from the CALL network.
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Fig. 18. Feature Contribution Analysis. WhoAml is the proposed model. WhoAmI-d is the basic version
of WhoAmlI without modeling the correlation between gender and age. WhoAmI-df stands for further ignor-
ing friend features. WhoAmlI-dc stands for further ignoring circle features. WhoAmI-def stands for ignoring
both friend and circle features.

Effects of Demographic Interrelations. We evaluate the effects of demographic
interrelation on the predictions. Without modeling the interrelation between gender
and age, our proposed WhoAmI method degenerates to a basic factor graph model
(FGM/WhoAmI-d). From Table IV, we clearly observe the 2% to 4% improvements
achieved by WhoAml to FGM on weighted F1-Measure. We further analyze feature
contributions for demographic prediction. Recall that in Feature Definition of Sec-
tion 6.2, besides the individual features, we introduced the friend features (nonstruc-
tural friend attributes and dyadic factors) and circle features (nonstructural circle at-
tributes and triadic factors). By removing either friend or circle features, we evaluate
the decrease in predictive performance in terms of weighted F1-Measure, plotted in
Figure 18. WhoAmI-df, WhoAmI-dc, and WhoAmI-dfc stand for the removing of friend
features, circle features, and both of them, conditioned on WhoAmI-d without modeling
gender and age interrelations. Clearly, we can see that for inferring gender, the perfor-
mance when removing circle features drops more than when removing friend features,
which indicates a stronger contribution of circle features to gender prediction than
friend features. However, for inferring users’ age, friend features are more telling than
circle features. The feature contribution analysis further validates our observations of
demographic-based social strategies, and demonstrates that the proposed model works
well by capturing the observed phenomena.

Scalability. We verify the distributed learning algorithm by partitioning the original
large-scale networks into multiple sub-networks based on users’ administrative areas.
Users’ areas are determined by their postal codes during subscription registration.
Each sub-network in one area is used as the input for a given core. By utilizing MPI,
our distributed algorithm can achieve 9 — 10 x speedup with 16 cores with less than 2%
drop in performance. Basically, our learning algorithm can converge in 100 iterations,
and each iteration costs about 2 (SMS) or 5 minutes (CALL) for one single processor.
By leveraging a distributed learning algorithm, our WhoAmlI model is efficient even
for large-scale networks with millions of nodes.
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Fig. 19. Application. Performance of demographic prediction with different percentages of postpaid users.

Application—Predicting Prepaid Users. As introduced before, mobile operators
may not have the demographic information of prepaid users, and the percentages of
prepaid users in mobile operators of different countries are different, such as 95% in
India, 80% in Latin America, 70% in China, 65% in Europe, and 33% in America. We
use different ratios of users as training data and the remaining as testing data. In this
way, we can simulate the effects of different percentages of prepaid users on predictive
performance. Figure 19 shows the prediction results when varying the percentage of
labeled users in the training set. Clearly, we can see rising trends as the training
set increases in Figure 19(a) and 19(b). This indicates the positive effects of training
data size on predicting the gender of mobile users. Specifically, we can see that in
this simulation, the performance for predicting the gender of prepaid users can reach
~70% in India (5% users as training) in terms of weighted F1-Measure, ~75% in China
(30% users as training), and ~83% in America (67% users as training). The smooth
lines in Figure 19(c) and 19(d) reveal the limited contributions of training data size on
predicting age. We can see that in all cases, obvious improvements can be obtained by
our proposed WhoAmI method with different sizes of training data.
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Table V. The number of active CALL users across different operators. #edges in O; — O; represents the number of edges between
two O; users, and #edges in O; — O; represents the number of edges having one O; endpoint and the other O; endpoint.

‘ H Oo%Oo ‘ 00—)01 00%02 H 01—)01 01*)00 01%02 H 02%02 OQ*)OO 02*}01
#users 608,589 | 608,589 | 608,589 || 292,848 | 292,848 | 292848 183,893 | 183,893 | 183,893
#edges || 1,291,086 534,064 342,845 424,394 534,064 205,487 208,452 342,845 205,487
degree 2.12 0.88 0.56 1.45 1.82 0.70 1.13 1.86 1.12

Table VI. The number of active SMS users across different operators. #edges in O; — O; represents the number of edges between
two O; users, and #edges in O; — O; represents the number of edges having one O; endpoint and the other O; endpoint.

‘ H 004)00‘004)01 OO*}OQ H 01~)01 Olﬁ)Oo 01~>OQ H OQ*}OQ OQ*)OO 024)01

#users 161,547 161,547 161,547 87,556 87,556 87,556 56,634 56,634 56,634
#edges 257,154 123,192 72,313 93,342 123,192 46,807 37,660 72,313 46,807
degree 1.59 0.76 0.45 1.06 1.41 0.53 0.66 1.28 0.83

7.3. Coupled Network Demographic Prediction across Multiple Mobile Operators

We further study how the coupled variant of the WhoAmI method can be used by
a mobile operator to infer the demographic profiles of its competitors’ users. As the
example illustrated in Figure 3, a mobile operator O; could have the communication
records of its users and also the communication logs between its users and users of
another operator O, [Dong et al. 2015]. It would be very useful for the operator O; to
have the demographic profiles of users of the competitor O, for business intelligence.

In this mobile dataset, there are three major mobile operators. We denote each of
the three operators as Oy, O, and Os, respectively. Tables V and VI list the numbers
of active users in the CALL and SMS networks of each operator, and the numbers of
edges within and across different operators. We train the coupled WhoAmI model by
taking one operator’s network as the source network and another one’s as the target
network. In total, we construct six pairs of prediction cases in the CALL and SMS
networks, respectively, that is, Oy to O1, Oy to O3, O1 to Og, O1 to O3, O5 to Og, and O,
to Ol.

Table VII shows the strong predictability of users’ demographic attributes across
each pair of mobile operators. In general we can see that the predictive performance
is very promising compared to the results in Table IV. Specifically, the results demon-
strate that the coupled WhoAmI method offers a 67% ~ 80% predictability for infer-
ring competitor users’ gender and a greater than 65% potential for the inference of
their age. In other words, a mobile operator would know the demographic profiles of
as many as more than half of its competitors’ users, enabling the real-world applica-
tion of business intelligence in telecommunication, such as acquiring new users from
competitors through precision marketing.

We also notice that the prediction cases with a larger mobile operator (more users)
as the training data and a smaller operator as the targeting data perform better than
those with them exchanged, i.e., the cases Oy to O, Oy to Os, and O; to O, outperform
the cases O; to Op, O3 to Oy, and Oy to O1, where the size |Ogy| > |O1] > |O2]. Recall
that the coupled prediction task is set in real-world scenarios (Cf. Figure 3), that is,
the source operator can only observe partial information about the target network,
making it infeasible to compute the user distribution distances between its users and
target operator users. However, to reason about the outperformance when predicting
from Ojqrge t0 Ospmai, We report the average number of connections of users from each
operator in Tables V and VI. In a composite network of two operators, such as Oq (large)
and O; (small), O; users on average have more Oy connections than O; connections
(1.82 vs. 1.45 in CALL and 1.41 vs. 1.06 in SMS). In other words, users in a small
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Table VII. Performance of coupled network demographic prediction across multiple mobile operators.

Network | Method Gender - Age
wPrecision | wRecall | wF1-Measure || wPrecision | wRecall | wF1-Measure
Op to O1 0.7870 0.7800 0.7807 0.7075 0.7087 0.7039
Op to Oz 0.7936 0.7939 0.7818 0.7100 0.7140 0.7085
CALL 01 to Og 0.7404 0.7403 0.7396 0.6986 0.6801 0.6696
01 to Oz 0.7986 0.7979 0.7982 0.7160 0.7167 0.7094
O3 to Og 0.7325 0.7282 0.7251 0.6900 0.6758 0.6622
O3 to O1 0.7810 0.7794 0.7768 0.7147 0.7090 0.6981
Op to O1 0.7217 0.7222 0.7219 0.7172 0.7168 0.7049
Op to Oz 0.7329 0.7326 0.7327 0.7240 0.7259 0.7143
SMS 01 to Og 0.6737 0.6713 0.6721 0.6897 0.6734 0.6540
01 to O3 0.7347 0.7288 0.7285 0.7272 0.7245 0.7095
O3 to Og 0.6831 0.6846 0.6798 0.6885 0.6729 0.6497
O3 to O 0.7232 0.7201 0.7143 0.7191 0.7152 0.6964

operator associate more with users of a large operator than users of the same operator.
Not surprisingly, users in the large operator Oy have higher rates of same-operator
contacts than of O; connections (2.12 vs. 0.88 in CALL and 1.59 vs. 0.76 in SMS).
Consequently, the large operator Oy,,4. is able to collect rich structural information
about target users from its competitors Og,,.;; who have smaller user base, due to those
targets communicate more intensively with O;q,¢. users than themselves—O;;,;;. This
enables its advantage of more accurately inferring its competitors’ users, facilitating
its marketing strategies and outcomes.

8. RELATED WORK

The availability of mobile phone communication records has offered researchers many
ways to analyze mobile networks, greatly enhancing our understanding of human mo-
bile behavior [Dong et al. 2014; Saramaki and Moro 2015; Blondel et al. 2015].

To better model the macro properties of mobile communication networks, Onnela et
al. [Onnela et al. 2007] examine the local and global structure of a society-wide mo-
bile communication network. Hidalgo and Rodriguez-Sickert [Hidalgo and Rodriguez-
Sickert 2008] investigate the communication persistence in mobile phone networks.
Faloutsos et al. [Seshadri et al. 2008] first propose the double pareto-lognormal distri-
bution to model the macro properties in call networks, which is beyond power-law and
lognormal distributions. They further discover that not only the node properties but
also clique structures follow the power-law distribution in mobile networks [Du et al.
2009]. Recently, the emergence of work on human mobility [Gonzalez et al. 2008; Wang
et al. 2011; Dong et al. 2015a; Zheng 2015] and mobile communication networks [Ale-
davood et al. 2015; Stopczynski et al. 2014; Gao et al. 2013], where human activities
are tracked by mobile phones, provides us a means of understanding and predicting
mobile social behavior. Eagle et al. [Eagle et al. 2009] try to infer the friendship net-
work in mobile phone data. Tseng et al. [Shie et al. 2013] aim to discover the valu-
able user behavior patterns by mining in mobile commerce environments. Miritello et
al. [Miritello et al. 2013] discover that people follow underpinning strategies to interact
with each other due to limited communication capacity. Meng et al. [Meng et al. 2016]
study the correlations and differences between mobile and online networking behav-
ior. Calabrese and Blondel et al. [Calabrese et al. 2014; Blondel et al. 2015] survey
the problems, techniques, and results by using mobile phones network data. However,
most previous work focuses on scaling the macroscopic properties of mobile networks,
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while our work incorporates the micro-network structure to model human communi-
cation behavior in mobile networks.

Furthermore, there are several works on user demographic and profile modeling.
Existing works try to infer user demographics based on their online browsing [Hu
et al. 2007], gaming [Szell and Thurner 2013] and search [Bi et al. 2013] behaviors.
Herring surveys how online communications facilitate gender equality, in particular,
empowering women to achieve social identity that are difficult in offline environment
[Herring 2003]. Leskovec and Horvitz [Leskovec and Horvitz 2008] examine the inter-
play of the MSN network and user demographic attributes. Mislove et al. study the
demographics of Twitter users [Mislove et al. 2011]. Tang et al. extract and model the
researcher profiles in large-scale collaboration networks [Tang et al. 2008]. Matthew
and Macskassy [Michelson and Macskassy 2011] analyze both the text and the net-
work connectivity of the blogs to infer the demographics of bloggers. Dong et al. [Dong
et al. 2013] investigate the mobile call duration behavior in mobile social networks
and find that young females tend to make long phone calls [Smoreda and Licoppe
2000], in particular in the evening. Llimona et al. [Llimona et al. 2015] study the im-
pact of gender and call duration on self-reported customer satisfaction. Macskassy et
al. [Chakrabarti et al. 2014] also learn a label propagation model to infer users’ public
profiles in Facebook social network. Additionally, researchers have used network infor-
mation to identify user status differences in email [Dong et al. 2015b; Hu and Liu 2012]
and LinkedIn networks [Zhao et al. 2013]. Nokia research organized the 2012 Mobile
Data Challenge to infer mobile user demographics by using 200 individual communi-
cation records without network information [Mo et al. 2012; Ying et al. 2012]. Kovanen
et al. [Kovanen et al. 2013] utilize temporal motifs to reveal demographic homophily
in dynamic communication networks. The main difference between existing work and
our efforts lies in that existing work mainly analyzes demographics (gender, age, sta-
tus, etc.) separately, while our analysis and model consider the interrelation among
different demographic attributes.

9. CONCLUSION

In this paper, we model users’ social decisions on connecting and maintaining relation-
ships conditioned on their demographic profiles in large-scale mobile communication
networks. Significant social strategies are stemmed from the big mobile data. We find
young people put more focus on enlarging social circles; as they age, they have the ten-
dency to maintain small but closed social relationships. We also observe striking gen-
der differences in social triadic relationships across individuals’ lifespans. Specifically,
the relationships among three same-gender individuals are persistently maintained
over a lifetime, while the opposite-gender triadic relationships disappear when they
enter into their middle-age. Our null model demonstrates the statistical significance
of the evolution of social strategies in human communication. We further engage in an-
swering the question of to what extent user demographics can be revealed from mobile
communication interactions. We formalize a demographic prediction problem to simul-
taneously infer users’ gender and age, and further propose the WhoAmI method to
solve it. Experimental results in phone call and text messaging networks demonstrate
both the effectiveness and efficiency of our proposed model. Meanwhile, we identify
a new problem—coupled network demographic prediction across multiple mobile op-
erators. To address the unique challenges in this task, we present a coupled variant
of the WhoAmI method. Our results unveil the predictability of user demographics
across competitor networks, enabling the real-world application scenario of business
intelligence in telecommunication.

Despite the promising discoveries and predictive performance of the present work,
there is still large room left for future work. First, although we examine the social
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strategies in two large-scale mobile networks with millions of users, the results are
limited to the data we used, that is, the mobile communications from one specific
country. On one hand, there may exist variances on social strategies used by people
across different cultural backgrounds, political systems, and geographical boundaries.
Therefore, it is natural to examine the observed results in other countries upon the
available data. On the other hand, although previous studies have demonstrated that
mobile communications can be used as a proxy to represent human communications,
it would generalize our findings beyond mobile channels if online social networks with
demographic information could be investigated. Second, mobile communications are
associated with dynamic information, making it necessary to further couple our stud-
ies between network structures and user demographics with social dynamics. Third, in
addition to study phone calls and text messages separately, it would be interesting to
investigate social strategies and predict user demographics from the mobile network
as a whole by combining the phone call and text messaging networks into one net-
work. Finally, some other social strategies and theories can be explored and validated
for modeling user social networking behavior. In addition, examining how the inferred
demographics can help other topics in social network analysis, such as influence prop-
agation, community detection, and network evolution, would also be very meaningful.
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