

User Modeling on Demographic Attributes in Big Mobile Social Networks

Yang Yang Northwestern University

User Modeling on Demographic Attributes in Big Mobile Social Networks. Yuxiao Dong, Nitesh V. Chawla, Jie Tang, Yang Yang, Yang Yang. ACM TOIS 2017

Inferring User Demographics and Social Strategies in Mobile Social Networks. Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, Nitesh V. Chawla. ACM KDD 2014

The Era of Digitally Networked World

JAN 2018

DIGITAL AROUND THE WORLD IN 2018

KEY STATISTICAL INDICATORS FOR THE WORLD'S INTERNET, MOBILE, AND SOCIAL MEDIA USERS

http://wearesocial.com/uk/blog/2018/01/digital-in-2018-global-overview

1

As of 2018, there were **5.135** billion mobile subscriptions, large global penetration. Users average **22** calls, **23** messages, and **110** status checks per day^[2].

1. http://www.dailymail.co.uk/sciencetech/article-2449632/How-check-phone-The-average-person-does-110-times-DAY-6-seconds-evening.html

2. https://www.enisa.europa.eu/media/press-releases/using-national-roaming-to-mitigate-mobile-network-outages201d-new-report-by-eu-cyber-security-agency-enisa

tttt 🚠

 \sim

Big Mobile Network Data

A **nation-wide** large mobile communication data

- Over 7 million users: male 55% / Female 45%
- Over 1 billion call & message records between Aug. and Sep. 2008
- Reciprocal, undirected, and weighted networks: CALL & SMS

Europe and Mobile (CALL) population pyramids.

User Profiling on Demographics

Human Social Needs & Social Strategies

- Human needs are defined according to the existential categories of
 - being, having, doing, and interacting^[1].
- Two basic social needs are to^[2]
 - Meet new people
 - Strengthen existing relationships
- Social strategies are used by people to meet social needs^[1,2,3].
 - What are the social strategies of people with different demographics?
 - Demographics: gender, age, social status, etc.

- 1. http://en.wikipedia.org/wiki/Fundamental human needs
- 2. M.J. Piskorski. Social strategies that work. Harvard Business Review. Nov. 2011.
- 8. V. Palchykov, K. Kaski, J. Kertesz, A.-L. Barabasi, R. I. M. Dunbar. Sex differences in intimate relationships. Scientific Reports 2012.

How do people of different gender and age connect & interact with each other?

Micro: Ego, Social Tie, & Triad

Ego Networks

• Younger people are active in broadening their social circles, while older people tend to maintain smaller but more closed connections.

How many different triadic social circles do we have?

People expand both same-gender and opposite-gender social groups.

Demographic Triad Distribution

• The opposite-gender social groups disappear.

The same-gender social groups last for a lifetime.

Null Model

- Users' gender and age are randomly shuffled
- Randomly shuffle 10,000 times
- \bullet x: empirical result from real data
- \tilde{x} : shuffled results
- $\mu(\tilde{x})$: the average of shuffled data
- $\sigma(\tilde{x})$: the standard deviation of shuffled data

•
$$z(x)$$
: z-score $z(x) = \frac{x - \mu(\tilde{x})}{\sigma(\tilde{x})}$

Demographic Triad Distribution

x: empirical result from real data

• $\mu(\tilde{x})$: the average of **shuffled** data

z(x): z-score

The results are statistically significant

How frequently do you call your mom vs. your significant other?

 Interactions between young girls and boys are much more frequent than those between two girls or two boys.

Results in the CALL network, and similar observations are also found from SMS.

Social Tie Strength

 Cross-generation interactions between two females are more frequent than those between two males or one male and one female.

Social Strategies across the Lifespan

Can we know who we are based on our social networks?

Network Mining and Learning Paradigm

Network Mining Tasks

- node attribute inference
- community detection
- similarity search
- link prediction

. . .

social recommendation

Predicting User Demographic Attributes

- Infer Users' Gender *Y* and Age *Z* Separately.
 - Model correlations between gender Y and attributes X;
 - Model correlations between age Z and attributes X;

Demographic Prediction

• Infer Users' Gender *Y* and Age *Z* Simultaneously.

- Model correlations between gender Y and attributes X, Network G and Y;
- Model correlations between age Z and attributes \mathbf{X} , Network G and Z;
- Model interrelations between *Y* and *Z*;

WhoAmI Method

Code is available at: http://arnetminer.org/demographic

WhoAml: Objective Function

Objective function:

$$\mathcal{O}(\alpha, \beta, \gamma) = \sum_{v_i \in V} \alpha_{y_i z_i} \mathbf{x}_i + \sum_{e_{ij} \in E} \sum_{p=1}^{6} \beta_p g'_p(\cdot) + \sum_{c_{ijk} \in G} \sum_{q=1}^{20} \gamma_q h'_q(\cdot) - \log W$$

Model learning: gradient descent

K. P. Murphy, Y. Weiss, M. I. Jordan. Loopy Belief Propagation for Approximate Inference: Am Empirical Study. In UAI'99

Code is available at: http://arnetminer.org/demographic

21

Experiments: Feature Definition

• Given one node *v* and its ego network:

- Individual feature:
 - Individual attribute: degree, neighbor connectivity, clustering coefficient, embeddedness and weighted degree.
- Friend feature:
 - Friend attribute: # of connections to female/male, young/young-adult/middle-age/senior friends (from labeled friends).
 - Dyadic factor: both labeled and unlabeled friends for social tie structures in v's ego network.
- Circle feature:
 - Circle attribute: # of demographic triads, i.e., v-FF, v-FM, v-MM; v-AA, v-AB, v-AC, v-AD, v-BB, v-BC, v-BD, v-CC, v-CD, v-DD. (A/B/C/C denote the young/young-adult/middle-age/senior)
 - Triadic factor: both labeled and unlabeled friends for social triad structures in v's ego network.

• LCR/SVM/NB/RF/Bag/RBF:

- Individual/Friend/Circle Attributes
- FGM/DFG
 - Individual/Friend/Circle Attributes
 - Structure feature: Dyadic factors
 - Structure feature: Triadic factors

WhoAml: Experiments

Network	Method	Gender			Age			
INCLWOIK		wPrecision	wRecall/Accu	wF1-Measure	wPrecision	wRecall/Accu	wF1-Measure	
CALL	LRC SVM NB RF Bag RBF EGM	 Data: n >1.09 n >304 th 50% as 	nobile pho nillion users in nousand users s training data	ne users 4 n CALL in SMS	 Baselines: LRC: Logistic Regression SVM: Support Vector Machine NB: Naïve Bayes RF: Random Forest 			
	DFG	o 50% as	s test data					
SMS	SVM NB RF	• Evaluation Metrics:			 BAG: Bagged Decision Tree RBF: Gaussian Radial Basis NN 			
	Bag RBF FGM DFG	 Weight Weight Weight 	e	 FGM: Factor Graph Model <i>DFG (WhoAmI)</i> 				
		• Accura	ucy					

Demographic Predictability

Network	Method	Gender			Age							
		wPrecision	wRecall/Accu	wF1-Measure	wPrecision	wRecall/Accu	wF1-Measure					
CALL	LRC											
	SVM	A Dradict	Predictability of User Demographic Profiles									
	NB	redictability of User Demographic Fromes										
	RF											
	Bag	• The proposed <i>WhoAmI</i> (DFG) outperforms baselines by up to 10% in terms of F1-Measure.										
	RBF											
	FGM											
	DFG											
	LRC											
SMS	SVM	• We c	• We can infer 80% of users' gender from the CALL network									
	NB											
	RF	• We can infer 73% of users' age from the SMS network										
	Bag											
	RBF											
	FGM	• The phone call behavior reveals more user gender than text messaging										
	DFG											
		• The text messaging behavior reveals more user age than phone call										

Application 1: Postpaid \rightarrow Prepaid

- *Postpaid* mobile users are required to create an account by providing detailed demographic information (e.g., name, age, gender, etc.).
- *Prepaid* services (pay-as-you-go) allow users to be anonymous --- no need to provide any user-specific information.
 - 95% of mobile users in India
 - 80% of mobile users in Latin America
 - 70% of mobile users in China
 - 65% of mobile users in Europe
 - 33% of mobile users in the United States

Train the model on postpaid users and infer prepaid users' demographics

•

Application 1: Postpaid \rightarrow Prepaid

- Slide the training ratio to match proportion of postpaid users per country
- Train the model on postpaid users and infer prepaid users' demographics

Application 2: Coupled Networks

Coupled Demographic Prediction

Coupled Network Data

Real-world large mobile communication data

- Over 1 billion call & message records between Aug. to Sep. 2008
- Undirected and weighted networks
- Three major mobile operators E_{a} , E_{b} , E_{c}

	$ E_a$	E_b	E_c	$E_a \leftrightarrow E_b$	$E_a \leftrightarrow E_c$	$E_b \leftrightarrow E_c$
#Nodes	2,531,187	655,755	354,166	1,912,933	1,255,046	625,379
#Links	3,355,197	649,322	311,432	1,844,342	1,131,593	507,894
k	2.65	1.98	1.75	1.92	1.80	1.62
cc	0.0457	0.0366	0.0317	0	0	0
ac	0.2848	0.2693	0.2806	0.0231	-0.0305	0.1113

k: average degree *cc*: clustering coefficient *ac*: associative coefficient

WhoAml: Distributed Coupled Learning

ALGORITHM 1: Distributed CoupledMFG Learning Algorithm.

Input: The source network G^S , the cross network G^C , the node set V^T of the target network G^T , and the learning rate η **Output:** Parameters $\theta = (\alpha^S, \alpha^T, \beta, \gamma)$

Output: Parameters $\theta = (\alpha^2, \alpha^2, \beta, \beta)$

Master initializes $\theta \leftarrow 0$;

Master constructs the coupled factor graph according to Eq. (4.12) with G^S, G^C, V^T ;

Master partitions the input mobile network into K subgraphs of relatively equal size;

Master completes the broken structural factors with virtual nodes; Master forwards all subgraphs to slaves [Communication];

repeat

Master broadcasts θ to Slaves [Communication];

```
for k = 1 \rightarrow K do
```

Slave k computes local belief according to Eqs. 4.9 and 4.10; Slave k sends the local belief to Master [Communication];

 \mathbf{end}

Master calculates the marginal distribution for each variable according to Eq. 4.11;

```
Master calculates the gradient for each parameter according to Eq. 4.7;
Master updates the parameters according to Eq. 4.8;
```

until Convergence;

MPI based

Coupled Demographic Prediction

Network	Mothod		Gender		Age		
	Method	wPrecision	wRecall	wF1-Measure	wPrecision	wRecall	wF1-Measure
CALL	E_a to E_b	0.7870	0.7800	0.7807	0.7075	0.7087	0.7039
	E_a to E_c	0.7936	0.7939	0.7818	0.7100	0.7140	0.7085
	E_b to E_a	0.7404	0.7403	0.7396	0.6986	0.6801	0.6696
	E_b to E_c	0.7986	0.7979	0.7982	0.7160	0.7167	0.7094
	E_c to E_a	0.7325	0.7282	0.7251	0.6900	0.6758	0.6622
	E_c to E_b	0.7810	0.7794	0.7768	0.7147	0.7090	0.6981
SMS	E_a to E_b	0.7217	0.7222	0.7219	0.7172	0.7168	0.7049
	E_a to E_c	0.7329	0.7326	0.7327	0.7240	0.7259	0.7143
	E_b to E_a	0.6737	0.6713	0.6721	0.6897	0.6734	0.6540
	E_b to E_c	0.7347	0.7288	0.7285	0.7272	0.7245	0.7095
	E_c to E_a	0.6831	0.6846	0.6798	0.6885	0.6729	0.6497
	E_c to E_b	0.7232	0.7201	0.7143	0.7191	0.7152	0.6964

Train the model on my own users and infer the demographics of my competitor' users.
Infer 73~79% of gender information and 66~70% of age of a competitor's users.

- Discover the evolution of social strategies across lifespan
- Propose Probabilistic Graphical Model---Multi-Label Factor Graph (*WhoAml*)---for node attribute prediction in networks
- Demonstrate the predictability of users' gender and age from mobile communication networks & two applications in telecommunications.

Thank you!

User Modeling on Demographic Attributes in Big Mobile Social Networks. Yuxiao Dong, Nitesh V. Chawla, Jie Tang, Yang Yang, Yang Yang. In ACM Transactions on Information Systems, 2017 (TOIS 2017).

Inferring User Demographics and Social Strategies in Mobile Social Networks. Yuxiao Dong, Yang Yang, Jie Tang, Yang Yang, Nitesh V. Chawla. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2014 (KDD'14).