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ABSTRACT
We study the problem of supervised contrastive (SupCon) learn-

ing on graphs. The SupCon loss has been recently proposed for

classification tasks by pulling data points in the same class closer

than those of different classes. However, it could be difficult for

SupCon to handle datasets with large intra-class variances and

high inter-class similarities. This issue is also challenging when

it couples with graph structures. To address this, we present the

cluster-aware supervised contrastive learning loss (ClusterSCL
1
)

for graph learning tasks. The main idea of ClusterSCL is to retain

the structural and attribute properties of a graph in the form of

nodes’ cluster distributions during supervised contrastive learning.

Specifically, ClusterSCL introduces the strategy of cluster-aware

data augmentation and integrates it with the SupCon loss. Exten-

sive experiments on several widely adopted graph benchmarks

demonstrate the superiority of ClusterSCL over the cross-entropy,

SupCon, and other graph contrastive objectives.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; Probabilistic reasoning.
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1 INTRODUCTION
Graph data, which has been broadly studied in a variety of research

domains, such as social science [2, 13, 52, 60, 62], computational

biology [39, 40, 56] and knowledge graph [18, 49], provides powerful

machinery for effectively capturing the rich correlations among

data points. In this work, we focus on node classification — a widely

studied task on graphs. Inspired by the advances of graph neural

networks (GNNs) [11, 23, 28, 47, 55], the most popular architecture

for performing node classification includes two key components:

a GNN encoder for encoding node representations and a linear or

MLP classifier for predicting node labels.

Extensive researches promote the quality of classification via

studying promisingGNN encoders for better representing nodes [11,

16, 28, 47, 55]. The cross-entropy loss is the most widely used loss

function for supervised learning of the GNN encoder and the classi-

fier. Recently, supervised contrastive learning (SupCon) [21] which

extends the unsupervised contrastive learning (CL) [5] to the fully

supervised setting, has shown advantages over cross-entropy loss

on the large-scale ImageNet classification tasks [21]. SupCon pulls

representations of the same class closer than those of different

classes, reducing the difficulty of discovering the classification

boundaries between classes. This motivates us to adopt the com-

petitive SupCon loss in the tasks of node classification.

Despite the success of SupCon, intra-class variances and inter-

class similarities in the real-world graph data make the SupCon loss

sub-optimal. The top of Figure 1(a) shows an example of node clas-

sification in a social network, where (𝑢1, 𝑢3) or (𝑢2, 𝑢4) belong to
the same class but have distinct interests and live in different graph

communities (intra-class variances), while (𝑢1, 𝑢2) or (𝑢3, 𝑢4) come

from different classes but share similar graph patterns (inter-class

similarities). Such nodes result in a complex decision boundary in

the Euclidean embedding space (the bottom of Figure 1(a)). When

performing SupCon for the anchor node 𝑢2, as illustrated in the top

of the Figure 1(b), for the positive sample pairs that belong to the

same class but locate in distinct clusters such as (𝑢2, 𝑢4), simply

pulling them together in the embedding space could indirectly pull

together the nodes of different classes such as (𝑢2, 𝑢3), since 𝑢3
is structurally similar to 𝑢4. Meanwhile, for the negative sample

pairs that belong to different classes but locate in the same cluster

such as (𝑢2, 𝑢1), simply pushing them away could indirectly push

away the nodes of the same class such as (𝑢2, 𝑢5), since 𝑢5 is struc-
turally similar to 𝑢1. In other words, contrasting the nodes with
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(a) Node classification with intra-class variances

and inter-class similarities.
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(b) Comparison between SupCon and ClusterSCL.
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(c) Decision boundaries learned by

different loss functions.

Figure 1: Motivation of our work (best seen in color). Different colors of nodes represent different classes. The gray area in (b)
denotes the cluster derived based on intrinsic data property. (a) Node classification with intra-class variances and inter-class
similarities. (𝑢1, 𝑢3) or (𝑢2, 𝑢4) are of the same class but locate in distinct graph communities. (𝑢1, 𝑢2) or (𝑢3, 𝑢4) are of different
classes but share similar structural patterns. (b) Comparison between SupCon and ClusterSCL in the embedding space. SupCon
could break the intrinsic cluster distributions, while ClusterSCL performs node contrast as well as retaining the cluster
distributions. (c) Decision boundaries learned by different loss functions. ClusterSCL enables an easier decision boundary.

large intra-class variances and high inter-class similarities could

misinterpret the true graph property, resulting in a more complex

decision boundary shown in the top of Figure 1(c).

To address this problem, we propose to learn the intrinsic
graph property expressed by nodes’ cluster distributions and
retain it when performing SupCon learning, expecting to learn
an easier decision boundary as illustrated in the bottom of Fig-

ure 1(c). To be specific, we conduct clustering in the embedding

space to learn the cluster distribution for each node. In order to

retain the cluster distributions during SupCon learning, we can

straightforwardly perform SupCon within the same cluster. How-

ever, this solution ignores the contrast between some potentially

useful sample pairs such as (𝑢1, 𝑢3) and (𝑢2, 𝑢4), since they are

partitioned into different clusters. Empirical studies in Section 5.3

verify the limitation. Alternatively, we design a cluster-aware data

augmentation (CDA) module to generate the augmented positives

and negatives for each anchor. The bottom of Figure 1(b) illustrates

the basic idea. The augmented samples stay in or closer to the

cluster of the anchor to narrow the space for SupCon learning.

By doing this, the pulling strength of 𝑢4 to its anchor 𝑢2 and the

pushing strength of 𝑢1 apart from its anchor 𝑢2 can be indirectly

weakened (compared with SupCon) to help retain the nodes’ cluster

distributions.

Formally, we propose a simple and effective contrastive learning

scheme called Cluster-Aware Supervised Contrastive Learning
(ClusterSCL), to unify the node clustering, the CDA, and the SupCon.

ClusterSCL is a probabilistic model, where we introduce a latent

variable to represent which cluster an anchor node should belong to

and formalize the supervised contrast as a discrimination task with

a latent variable. To optimize the feature encoder viamaximizing the

log conditional likelihood, we develop a variant of the Variational

Expectation-Maximization (Variational EM) algorithm for learning

and inference of ClusterSCL.

Overall, our main contributions are summarized as follows:

• We design a cluster-aware data augmentation (CDA) method

to softly constrain the SupCon learning by node clusters, so

that the negative impact induced by intra-class variances

and inter-class similarities can be alleviated.

• ClusterSCL unifies the clustering, the cluster-aware data

augmentation, and the supervised contrastive learning via a

probabilistic model to make use of their interactions.

• We conduct extensive experiments on the widely adopted

graph benchmarks for node classification to evaluate our

model. ClusterSCL is proposed for node classification, but

the main thought is not restricted to this task.

2 RELATEDWORK
The work is closely related to contrastive representation learning

and data augmentation.

2.1 Contrastive Representation Learning
Contrastive learning (CL) has become one of the most popular ap-

proaches for unsupervised representation learning. The core idea

behind is to pull together an anchor and its positive samples in the

embedding space, while push apart the anchor from its negative

samples. Triplet loss [36], lifted structured loss [42] and N-pair

loss [41] are classic contrastive loss functions. Recently, the agree-

ment within a positive sample pair is formalized by mutual informa-

tion (MI) maximization. To facilitate the computation of MI, Jensen-

Shannon divergence [8, 29] and NCE/InfoNCE loss [10, 14, 46] are

adopted in practice. In the graph domain, representation learning

methods such as DGI [48], DCI [53], InfoGraph [43], MVGRL [12],

GCC [31], GraphCL [58], and JOAO [57], are inspired by CL a lot

and achieve good performance on many graph mining tasks. Ear-

lier attempts of unsupervised graph representation learning such
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as GAE [22], node2vec [9], deepwalk [30], and LINE [44], can be

viewed as a case of CL, which treats structurally nearby nodes as the

positive pairs and encourages them to have similar representations.

On a parallel note, the thought of CL is applied to the supervised

setting. CLIP [32] maximizes the agreement between the vision

representation and the language representation of the same thing.

Currently, SupCon [21] extends the batch unsupervised contrastive

learning [5] to a fully supervised setting, where each positive sample

pair consists of samples from the same class. Specially, SupCon re-

sembles the soft-nearest neighbors loss [35, 54]. Please refer to [21]

for the detailed comparison between SupCon and soft-nearest neigh-

bors loss. In this work, we inherit SupCon to perform supervised

learning of the node classification models. Instead of directly using

SupCon, we propose ClusterSCL to alleviate the negative impacts

induced by the intra-class variances and the inter-class similarities.

2.2 Data Augmentation
Data augmentation is an important technique employed by CL.

It changes the pattern of a sample but remains the semantic in-

formation unchanged, so that the augmented data can be viewed

as another version (i.e., a positive sample) of the original sam-

ple. In computer vision, there are many well-studied methods for

data augmentation, such as random rotation, random cropping,

and random Gaussian blur [5]. Some studies learn augmentation

strategies via searching for the combination of different augmen-

tations [6, 7, 17]. In the graph domain, graph augmentation also

raises significant interest. For the node-level augmentation, ego-

network sampling [31] is a good choice so far. Feature transfor-

mation [58], structure transformation [12, 31, 58] and subgraph-

sampling [31, 58] for the graph-level augmentation, also receive lots

of attentions. Currently, JOAO [57] is proposed to automatically

select augmentations on the specific graph data.

Besides generating positive samples for contrastive learning, data

augmentation can be used to enlarge the training set to improve

the generalization ability of neural networks. Adversarial learning-

based methods [4, 24, 50] train a generator to augment the training

examples. The mixup-based method which is simple yet effective

is another popular solution. mixup [61] generates new training

instances bymixing up samples across different classes. Cutmix [59]

improves the model robustness by cutting and pasting patches

among training images. MoCHi [19] facilitates better and faster

learning via generating hard negatives with the mixing strategy.

The proposed cluster-aware data augmentation (CDA) also follows

the mixing strategy. Differently, CDA aims to refine the positive

and negative samples for SupCon, and CDA is integrated into the

learning process, instead of being an independent module.

3 PROBLEM FORMALIZATION
In this section, we formalize the problem of node classification and

introduce the popular GNN-based node classification model, then

describe two training settings.

Let 𝐺 = (𝑉 , 𝐸, 𝑋 ) be an attributed undirected graph, where 𝑉 =

{𝑣1, 𝑣2, · · · , 𝑣 |𝑉 |} denotes the set of nodes, and 𝐸 = {𝑒1, 𝑒2, · · · , 𝑒 |𝐸 |}
denotes the set of edges. 𝑋 ∈ R |𝑉 |×𝑑0

is the matrix of node at-

tributes, where 𝑑0 is the dimension of an attribute vector, and the

𝑖-th row of 𝑋 denotes the attribute vector of node 𝑣𝑖 . The adjacency

matrix of𝐺 is denoted by𝐴 ∈ R |𝑉 |× |𝑉 |
, where 𝑎𝑖 𝑗 = 1 if

(
𝑣𝑖 , 𝑣 𝑗

)
∈ 𝐸

and 0 otherwise.

In this paper, we consider the problem of classifying nodes in a

graph. Formally, the problem with 𝐾 classes is defined as follows:

Problem 1. Node Classification in a Graph. Given a partially

labeled graph𝐺 =

(
𝑉 , 𝐸, 𝑋,𝑌𝐿

)
, where𝑌𝐿 denotes the available node

labels in 𝐺 , the objective is to learn a mapping function:

F : 𝐺 =

(
𝑉 , 𝐸, 𝑋,𝑌𝐿

)
→ 𝑌 (1)

where 𝑌 ∈ R |𝑉 |×𝐾 includes 𝑌𝐿 and 𝑌𝑈 , and 𝑌𝑈 is the unavailable
node labels which are to be predicted. 𝑌𝐿 is used as supervision for
optimizing F . In particular, each row of 𝑌 is a one-hot or multi-hot
vector to represent the label of the corresponding node. In this paper,
we only consider the one-hot case.

Graph neural networks (GNNs) [11, 23, 28, 47, 55] have been

widely adopted to solve the defined problem. Concretely, the map-

ping function F consists of a GNN encoder 𝑔𝜃 and a linear or MLP

classifier 𝑓𝜙 , where 𝑔𝜃 encodes the node representations, then 𝑓𝜙
predicts node labels based on the node representations output by

𝑔𝜃 . More precisely,

𝑌 = F (𝐺) = 𝑓𝜙 (𝑔𝜃 (𝐺)) (2)

where 𝑌 ∈ R |𝑉 |×𝐾
is the predicted node labels. 𝜃 and 𝜙 are the

trainable parameters. Now we introduce two supervised settings to

train 𝑔𝜃 and 𝑓𝜙 .

End-to-end Training with Cross-entropy Loss. In general, the

node labels are predicted in an end-to-end manner. Cross-entropy

is the most popular loss function to simultaneously train 𝑔𝜃 and 𝑓𝜙 .

Two-stage Training with Supervised Contrastive Loss. Super-
vised contrastive (SupCon) loss encourages samples of the same

class to have similar representations, while pushes apart samples of

different classes in the embedding space. The first stage computes

node representations via 𝐻 = 𝑔𝜃 (𝐺) and trains 𝑔𝜃 via the SupCon

loss. Then based on the learned 𝑔𝜃 , the second stage predicts the

node labels via 𝑌 = 𝑓𝜙 (𝑔𝜃 (𝐺)) and trains 𝑓𝜙 via cross-entropy loss.

We suggest to simultaneously train 𝑔𝜃 and 𝑓𝜙 at the second stage.

SupCon has shown great success in image classification tasks [21],

so we employ this competitive loss function for supervised node

classification. Different from the original SupCon, we directly sam-

ple instances of the same class to construct positive sample pairs

without performing extra data augmentation. Note that CDA is

conducted on each constructed sample pair.

4 METHOD
In this section, we briefly review the base loss function SupCon and

then propose ClusterSCL. Furthermore, we discuss the relations

between ClusterSCL and some popular research topics.

4.1 Base CL Scheme: SupCon
ClusterSCL follows the thought of supervised contrastive (SupCon)

learning [21] to learn node representations, where each positive

sample pair consists of samples from the same class, while each

negative sample pair is formed by samples randomly chosen from
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the batch. Given 𝑁 randomly sampled nodes, we assign each node

a positive sample by randomly sampling from the other nodes in

the corresponding class. Thus, a batch 𝐵 contains 2𝑁 nodes. Since

each node can share class label with multiple nodes, the node could

have multiple positive samples in the batch.

For the positive samples of node 𝑣𝑖 within the batch, their indices

are denoted as set 𝑆𝑖 . Specifically, 𝑠𝑖 ∈ 𝑆𝑖 is a surrogate label of 𝑣𝑖 ,
which denotes the index of a positive sample of 𝑣𝑖 . The SupCon

loss function is formalized as follows:

LSupCon = −
∑︁
𝑣𝑖 ∈𝐵

1

|𝑆𝑖 |
∑︁
𝑠𝑖 ∈𝑆𝑖

log

exp

(
h⊺
𝑖
h𝑠𝑖 /𝜏

)
∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
h𝑗/𝜏

) (3)

where h denotes ℓ2-normalized representations, and 𝜏 is the tem-

perature parameter.

Intuitively, if nodes of the same class share the similar patterns,

pulling the same-labeled nodes together in the embedding space

via SupCon agrees with the true data property. However, nodes of

the same class may have diverse patterns (i.e., intra-class variances),

and nodes of different classes could be similar to each other (i.e,

inter-class similarities). In such a case, representations learned by

SupCon could misinterpret the true data property. In view of this, a

question is raised: is there a better way to construct the positive
sample pairs and negative sample pairs for SupCon learning?

4.2 Proposed CL Scheme: ClusterSCL
ClusterSCL answers the above question by a cluster-aware data

augmentation (CDA) module. Specially, ClusterSCL unifies the clus-

tering, the CDA and the SupCon learning via a probabilistic model.

Cluster-aware Data Augmentation (CDA). Assume that there

exist 𝑀 latent clusters which need to be retained during SupCon

learning, we introduce the latent variable 𝑐𝑖 ∈ {1, 2, . . . , 𝑀} to

indicate which cluster node 𝑣𝑖 should be clustered to. Given an

anchor node 𝑣𝑖 and a node 𝑣 𝑗 , CDA constructs an augmented version

of 𝑣 𝑗 at the feature level for SupCon learning via the following linear

interpolation:

˜h𝑗 = 𝛼h𝑗 + (1 − 𝛼)w𝑐𝑖 (4)

where w = {w𝑚}𝑀
𝑚=1

represents the cluster prototypes and is

shared across different batches.
˜h𝑗 includes information from 𝑣 𝑗

and stays closer to the cluster that the anchor node 𝑣𝑖 belongs to.

These virtual augmentations narrow the feature space for SupCon

learning, such that the pulling strength between a distant positive

sample pair and the pushing strength between a close negative

sample pair can be indirectly weakened to help retain the nodes’

cluster distributions.

Essentially, 𝛼 controls the strength of pulling (pushing) the orig-

inal sample pair (𝑣𝑖 , 𝑣 𝑗 ). We aim to adjust the value of 𝛼 for each

sample pair automatically. The main idea to do this is illustrated in

Figure 2. If the anchor node 𝑣𝑖 and the contrasted sample 𝑣 𝑗 already

stay close to each other in the embedding space, we tend to directly

contrast between them. So we use a larger 𝛼 to include more infor-

mation from 𝑣 𝑗 into the augmented sample. Conversely, if 𝑣𝑖 and

𝑣 𝑗 are far away from each other in the embedding space, we use a

smaller 𝛼 to decay the information from 𝑣 𝑗 to guarantee that the
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Figure 2: An illustration of cluster-aware data augmentation
(CDA). The weight of linear interpolation between the cluster
center and the node embedding of 𝑣 𝑗 is determined by their
distances (or similarities) to the anchor 𝑣𝑖 .

anchor and the augmented sample are not too far away from each

other. Considering that Eq. 3 explicitly models the pulling between

each positive sample pair rather than the pushing between each

negative sample pair, we design the principle of adjusting𝛼 from the

perspective of positive sample pairs. We apply the same principle

to the negative sample pairs, and CDA takes effect demonstrated by

the experimental results. Refining the principle for negative sample

pairs deserves further studies in the future work. Here, we calculate

the weight 𝛼 by:

𝛼 =

exp

(
h⊺
𝑖
h𝑗

)
exp

(
h⊺
𝑖
h𝑗

)
+ exp

(
h⊺
𝑖
w𝑐𝑖

) (5)

Since h𝑖 and h𝑗 lie on the surface of a hypersphere of radius 1, we

have | |h𝑖 −h𝑗 | |2 = 2−2h⊺
𝑖
h𝑗 , so a large inner product is equivalent

to a small squared Euclidean distance.

At the high level, both mixup [61] and CDA adopt the operation

of linear interpolation to generate virtual data points. Here, we’d
like to clarify how CDA differs frommixup:

• Objective-wise, mixup is proposed to enlarge the training

set for enhancing the generalization ability of neural net-

works, while CDA aims to handle the problem of intra-class

variances and inter-class similarities in SupCon learning.

• Technique-wise, mixup performs linear interpolations be-

tween two samples, while CDA performs linear interpola-

tions between a sample and a cluster. Specifically, we inter-

polate the representations of an anchor’s cluster center and

the anchor’s positive (negative) sample.

• Learning-wise, mixup is independent from the learning pro-

cess, while CDA in ClusterSCL is integrated into the learning

process to take advantages of the learnable parameters.

Integrating Clustering andCDA into SupCon Learning. Based
on the augmentations derived by CDA, we model the following

instance discrimination task:

𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) =
exp

(
h⊺
𝑖
˜h𝑠𝑖 /𝜏

)
∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
=

exp

(
h⊺
𝑖

(
𝛼h𝑠𝑖 + (1 − 𝛼)w𝑐𝑖

)
/𝜏
)

∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖

(
𝛼h𝑗 + (1 − 𝛼)w𝑐𝑖

)
/𝜏
)

(6)
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Before performing CDA, we need to know which cluster the

anchor node 𝑣𝑖 belongs to via:

𝑝 (𝑐𝑖 |𝑣𝑖 ) =
exp

(
h⊺
𝑖
w𝑐𝑖 /𝜅

)
∑𝑀
𝑚=1 exp

(
h⊺
𝑖
w𝑚/𝜅

) (7)

where 𝜅 is the temperature parameter for adjusting the softness of

the predicted cluster distributions, and 𝑝 (𝑐𝑖 |𝑣𝑖 ) can be viewed as a

prototype-based soft clustering module.

Since we have modeled the soft clustering module 𝑝 (𝑐𝑖 |𝑣𝑖 ) and
the cluster-aware discriminator 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ), ClusterSCL can be mod-

eled as the following instance discrimination task:

𝑝 (𝑠𝑖 |𝑣𝑖 ) =
∫

𝑝 (𝑐𝑖 |𝑣𝑖 ) 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) 𝑑𝑐𝑖 (8)

Please see Figure 3 for an overview of ClusterSCL .

Inference and Learning. In effect, it is non-trivial to maximize the

log likelihood over the whole training data due to the summation

within the log operation. We can adopt EM algorithm to solve this

problem, where we need to calculate the posterior distribution:

𝑝 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) =
𝑝 (𝑐𝑖 |𝑣𝑖 ) 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 )∑𝑀
𝑚=1 𝑝 (𝑚 |𝑣𝑖 ) 𝑝 (𝑠𝑖 |𝑣𝑖 ,𝑚)

(9)

However, it is prohibitive to compute the posterior distribution

due to the summation over the entire nodes

∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
.

Alternatively, we maximize the evidence lower bound (ELBO) of

log 𝑝 (𝑠𝑖 |𝑣𝑖 ) given by:

log 𝑝 (𝑠𝑖 |𝑣𝑖 ) ≥ LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 )
:= E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) [log 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 )]
− KL (𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) | |𝑝 (𝑐𝑖 |𝑣𝑖 ))

(10)

where 𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) is a variational distribution to approximate the

posterior 𝑝 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ). The derivation of the ELBO is provided in

Appendix A. Here, we formalize the variational distribution by:

𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) =
𝑝 (𝑐𝑖 |𝑣𝑖 ) 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 )∑𝑀
𝑚=1 𝑝 (𝑚 |𝑣𝑖 ) 𝑝 (𝑠𝑖 |𝑣𝑖 ,𝑚)

(11)

where 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) = exp

(
h⊺
𝑖
˜h𝑠𝑖 /𝜏

)
/∑𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
is

calculated within a batch 𝐵. Note that both 𝑣𝑖 and 𝑣𝑠𝑖 are in the

batch. Moreover, we apply 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) to estimate 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) in
Eq. 10, and give the explanation in Appendix B.

We optimize the model parameters via a variation of Variational

EM algorithm, where we infer 𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) at the E-step, then opti-

mize the ELBO at theM-step. Sampling a batch of nodes as described

in Section 4.1, we maximize the following objective:

LELBO (𝜽 ,w;𝐵) ≈ 1

|𝐵 |
∑︁
𝑣𝑖 ∈𝐵

1

|𝑆𝑖 |
∑︁
𝑠𝑖 ∈𝑆𝑖

LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) (12)

We observe that only using the stochastic update for the cluster

prototypes can result in trivial solution, i.e., most instances are

assigned to the same cluster. In order to alleviate this issue, we

apply the following update after each training epoch:

Cluster 1

Cluster 3

Cluster 2

p(ci = 3 | vi)

Σ

CDA

p(ci = 2 | vi)

p(ci = 1 | vi)

p(si | vi , ci = 1)

p(si | vi , ci = 2)

p(si | vi , ci = 3)

p(si | vi )

ci = 1, 2, 3Input Graph

si

i

si

i

si

i

si

i

vsi is a positive of vi

αhsi +(1-α)w1

αhsi +(1-α)w2

αhsi +(1-α)w3

CDA

CDA

Figure 3: An overview of ClusterSCL with three latent clus-
ters (best seen in color). ClusterSCL unifies the processes of
clustering, CDA and SupCon learning.

w𝑚 =
1

|𝑉𝑚 |

∑︁
𝑣𝑖 ∈𝑉𝑚

h𝑖 ,𝑚 = 1, 2, · · · , 𝑀 (13)

where 𝑉𝑚 denotes the set of nodes in the𝑚-th graph community

derived by METIS [20]. Before the training, we perform METIS to

partition the whole graph 𝐺 into𝑀 graph communities according

to the interconnections between nodes. We use the communities to

roughly describe the clusters, and average the node embeddings in

each community to update the cluster prototypes after each training

epoch. Note that ClusterSCL adopts Eq. 7 to derive a refined soft

cluster distribution for each node. The hard cluster distributions

output by METIS are only used for prototype update.

Besides, we observe that a fine-grained search on 𝜅 is needed,

which is inefficient. Empirically, we use a small 𝜅 for deriving a

relatively confident cluster prediction, and introduce an entropy

term to smooth the predicted cluster distributions. By doing this,

we can avoid the fine-grained search on 𝜅. Finally, the ClusterSCL

loss function is formalized as:

L (𝜽 ,w;𝐵) = −LELBO (𝜽 ,w;𝐵)+ 𝜂

|𝐵 |
∑︁
𝑣𝑖 ∈𝐵

𝑀∑︁
𝑐𝑖=1

𝑝 (𝑐𝑖 |𝑣𝑖 ) log 𝑝 (𝑐𝑖 |𝑣𝑖 )

(14)

where 𝜂 ∈ (0, 1] is the weight of the entropy term to control the

strength of smoothing.

Algorithm 1 shows the pseudocode of training with ClusterSCL.

We provide the complexity analysis of ClusterSCL in Appendix C.

4.3 Relations to Some Popular Research Topics

Deep Clustering. The most related topic is leveraging deep clus-

tering to enhance contrastive representation learning. Existing

attempts such as [3, 25, 26, 37, 45] follow the assumption that each
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Algorithm 1 Pseudocode of training with ClusterSCL

Input: Graph 𝐺 =

(
𝑉 , 𝐸, 𝑋,𝑌𝐿

)
, Number of clusters𝑀

Output: Parameters of the optimized graph encoder 𝑔𝜃 and cluster

prototypes w = {w𝑚}𝑀
𝑚=1

1: Partition𝑉 into𝑀 graph communities via the METIS algorithm

{𝑉𝑚}𝑀
𝑚=1

= METIS(𝐺);
2: Construct the batches {𝐵𝑡 }𝑇𝑡=1 according to 𝑌

𝐿
;

3: Initialize parameters 𝜽 and w;

4: while not MaxEpoch do
5: for 𝑡 = 1 to 𝑇 do
6: Calculate L (𝜽 ,w;𝐵𝑡 ) with Eq. 14;

7: 𝜽 ,w = Adam (𝜽 ,w,L);
8: end for
9: 𝐻 = 𝑔𝜃 (𝐺);
10: Update w based on 𝐻 and {𝑉𝑚}𝑀

𝑚=1
with Eq. 13;

11: end while
12: Return: 𝜽 and w

positive sample pair for contrastive learning share the similar clus-

ter distributions. In contrast, due to the intra-class variances and

inter-class similarities in reality, we consider the situation that

each positive sample pair can have dissimilar cluster distributions.

GS-TRS [1] proposed for fine-grained visual recognition also holds

the same assumption about intra-class variances. Specifically, GS-

TRS enforces instances of the same class within the same cluster

to be closer to each other. We evaluate the idea which is similar

to GS-TRS in Table 3, and the results demonstrate the superiority

of ClusterSCL. The reason is that GS-TRS rigidly constrains the

contrast within a cluster, so it overlooks other potentially useful

positive sample pairs that locate across different clusters.

Hard Negative/Positive Mining. This work is somehow related

to hard sample mining [19, 33, 36, 42, 51], which has been widely

studied in contrastive representation learning. The hard negative

samples are similar to the anchor, while the hard positive samples

are dissimilar to the anchor. Hard samples can normally provide sig-

nificant gradient information during training to benefit the model

optimization. Turn to this work, intra-class variances and inter-class

similarities naturally lead to hard positives and hard negatives. De-

spite the benefit of the hard samples, too large hardness may harm

the representation learning and even result in the collapsed repre-

sentations [33, 36, 42]. Thus, it is necessary to study the problem

of intra-class variances and inter-class similarities.

Learning on Non-Homophilous Graphs. Most of the GNNs

are designed based on the inductive bias of homophily, which as-

sumes that the connected nodes tend to be similar in both the

features and the labels. Recently, some studies [15, 27, 63] focus

on a non-homophilous scenario, where the connected nodes are

highly probably to be significantly dissimilar from each other in

features and labels. A promising solution is to design a more pow-

erful GNN encoder. Intra-class variances and inter-class similarities

can result in some non-homophilous nodes. Contrasting nodes in a

supervised way could alleviate the non-homophily issue in a global

way instead of the local revision of the graph convolution opera-

tion. However, the proposed ClusterSCL still follows the homophily

Table 1: Statistics of the used datasets.

Dataset #Nodes #Edges #Features #Classes

Cora 2,708 5,429 1,433 7

Pubmed 19,717 44,338 500 3

Citeseer 3,327 4,732 3,703 6

LastFM Asia 7,624 27,806 128 18

Amazon Computers 13,752 245,861 767 10

assumption. How to tackle more tough non-homophily issue by

supervised contrastive learning will be left for further studies.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

proposed ClusterSCL. The experiments are unfolded by answering

the following research questions (RQs): (1) How does ClusterSCL

perform on node classification tasks? (2) Does CDA take effect? and

(3) How does ClusterSCL perform under different sizes of labeled

training data?

5.1 Experimental Protocol

Datasets. We conduct experiments on the widely adopted bench-

marks for node classification, where each node has a class label.

Among these datasets, Cora, Pubmed and Citeseer2 [23] are ci-
tation networks, where nodes are documents and edges are the

citations links. LastFM Asia3 [34] is a social network, where nodes
represent users from Asian countries and edges are friendships

between them. Amazon Computers4 [38] is a co-purchase net-
work, where nodes represent products and edges represent two

products are frequently bought together. LastFM Asia and Amazon

Computers are preprocessed with pytorch-geometric
5
. Statistics of

these datasets are summarized in Table 1.

Baselines. We compare ClusterSCL with Cross-entropy and

SupCon to evaluate the effectiveness of ClusterSCL for supervised

learning of graph encoder. We also compare with DGI [48] and
DCI [53], which are unsupervised loss functions for optimizing

the graph encoder. DCI is proposed upon DGI for anomalous user

detection. Specially, DCI considers the inconsistency between users’

behavior patterns and users’ label semantics, which can correspond

to the intra-class variances and the inter-class similarities discussed

in this paper. The main idea behind DCI is to conduct local-semi-

global contrast within a more concentrated feature space, such that

the inconsistency can be reduced within such a space. Similar to

SupCon and ClusterSCL, DGI and DCI are performed under the

two-stage training scheme.

Experimental Settings. To ensure a fair comparison between

different loss functions, we keep the graph encoder and the classifier

unchanged. Specifically, we set a linear layer on the top of the GNN

2
Cora, Pubmed and Citeseer are downloaded from https://github.com/tkipf/gcn/tree/

master/gcn/data.

3
LastFM Asia is downloaded from https://graphmining.ai/datasets/ptg.

4
Amazon Computers is downloaded from https://github.com/shchur/gnn-benchmark/

raw/master/data/npz.

5
https://pytorch-geometric.readthedocs.io/en/latest

https://github.com/tkipf/gcn/tree/master/gcn/data
https://github.com/tkipf/gcn/tree/master/gcn/data
https://graphmining.ai/datasets/ptg
https://github.com/shchur/gnn-benchmark/raw/master/data/npz
https://github.com/shchur/gnn-benchmark/raw/master/data/npz
https://pytorch-geometric.readthedocs.io/en/latest
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Table 2: Overall evaluation.The bold numbers are the best performance among all two-stage models.

Cora Pubmed Citeseer LastFM Amazon

GCN-encoder

CE (E2E) 0.804 0.789 0.696 0.731 0.831

DGI (Two-stage, Unsup) 0.801 0.796 0.695 0.749 0.838

DCI (Two-stage, Unsup) 0.811 0.793 0.694 0.757 0.844
SupCon (Two-stage, Sup) 0.793 0.788 0.687 0.756 0.831

ClusterSCL (Two-stage, Sup) 0.818 0.805 0.692 0.752 0.834

GAT-encoder

CE (E2E) 0.799 0.786 0.691 0.772 0.828

DGI (Two-stage, Unsup) 0.808 0.794 0.684 0.781 0.836

DCI (Two-stage, Unsup) 0.821 0.790 0.695 0.784 0.836

SupCon (Two-stage, Sup) 0.816 0.797 0.693 0.776 0.842

ClusterSCL (Two-stage, Sup) 0.826 0.811 0.706 0.779 0.849

encoder as the classifier. Consider the assumption of homophily,

i.e., connected nodes tend to be similar in both features and labels,

we adopt GCN and GAT — two classic GNN encoders that follow

the homophily principle, as the backbones.

More concretely, the graph encoders contain 2 convolution layers

(64 hidden units and 0.5 dropout rate for each layer). For the GAT

encoder, the number of attention heads is set to be 8. We use the

Adam optimizer with weight decay 1e-4 for optimization, and decay

the learning rate by 0.5 with step size 50. Following the setting in the

source code of SupCon, we defaultly set the temperature parameter

𝜏 to be 0.07. The batch size for SupCon and ClusterSCL is set to be 32.

Each dataset contains a visible set and a test set. For Cora, Pubmed,

and Citeseer, the test set has been provided [23]. For LastFM Asia

and Amazon Computers, we randomly sample 50% nodes as the

test set. Node labels of the visible set are available during training.

We randomly sample 20 nodes per class in the visible set to form

the training set. The remaining nodes in the visible set form the

validation set.

The hyper-parameters we tune on the validation set include:

(1) the initial learning rate ∈ {1e-1, 1e-2, 1e-3}, (2) the number of

pre-train epochs for the two-stage models which ranges from 1

to 30, (3) the number of clusters which ranges from 𝐾 to 2𝐾 , (4)

𝜅 ∈ {0.05, 0.07, 0.09} and (5) 𝜂 ∈ {0.05, 0.1}. For each dataset, we

tune the initial learning rate on the end-to-end (E2E) model, then

apply the same initial learning rate to the two-stage models. When

using the cross-entropy loss to simultaneously optimize the graph

encoder and the classifier, early stopping criterion [48] is adopted

to avoid over-fitting. We set a patience of 100 and a maximum of

10,000 epochs for early stopping. The patience is reset whenever

the accuracy on the validation set increases.

Code Implementation. We implement all models with Pytorch.

We adopt Deep Graph Library (DGL)
6
for easy implementation of

the GNN encoders. METIS is implemented using an existing Python

Wrapper
7
. DGI loss, DCI loss and SupCon loss are implemented

using the source code released by their authors.

6
https://docs.dgl.ai

7
https://pypi.org/project/PyMetis

5.2 Overall Evaluation (RQ1)
We report the classification accuracy on test sets in Table 2. Here

we abbreviate LastFM Asia and Amazon Computers as LastFM and

Amazon. From the experimental results, we can summarize the

following conclusions. (1) The two-stage training scheme gen-
erally performs better than the end-to-end training scheme.
This can be explained by that training the graph encoder in advance

enables a good initialization of the graph encoder. (2) ClusterSCL
outperforms SupCon on most datasets. This demonstrates the

necessity of retaining intrinsic cluster distributions during SupCon

learning, and the proposed ClusterSCL is effective to retain such

information. (3) Unsupervised DGI and DCI also obtain good
performance. DGI and DCI do not use any class labels when train-

ing the graph encoder. For datasets with small intra-class variances

and inter-class similarities, node properties summarized by DGI

or DCI can already reflect the class semantics. SupCon that simply

pulls the same-labeled nodes together may reduce the data diver-

sity. For datasets with large intra-class variances and inter-class

similarities, the performance of SupCon can be suppressed. Con-

versely, the unsupervised methods which are independent from the

class labels, can be more robust. (4) ClusterSCL combines the
advantages of DCI and SupCon. In essence, DCI contrasts based

on the clusters, while SupCon contrasts based on the classes. The

competitive performance of DCI implies the necessity of modeling

cluster information. ClusterSCL improves upon SupCon, mean-

while, considers the cluster information. It is worth noting that DCI

performs k-means over the whole dataset after every certain num-

ber of training epochs (set to be 1 in the experiments), which limits

its applications on large-scale datasets. On the contrary, ClusterSCL

performs METIS once before training.

Empirically, a confident cluster prediction is often beneficial to

the performance of ClusterSCL. However, if a dataset has clear clus-

ter boundaries, preferring too confident cluster predictions may

amplify the negative impacts of false cluster predictions. Compared

with other losses, DCI shows more obvious advantages on Cora,

indicating that nodes in Cora could have more clear cluster bound-

aries. So we set a larger 𝜂 = 1.0 on Cora to smooth the predicted

cluster distributions.

https://docs.dgl.ai
https://pypi.org/project/PyMetis
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Table 3: Comparison with the Group Sensitive SupCon (GS-SupCon).

GCN-encoder GAT-encoder

SupCon GS-SupCon ClusterSCL SupCon GS-SupCon ClusterSCL

Cora 0.793 0.788 0.818 0.816 0.822 0.826
Pubmed 0.788 0.797 0.805 0.797 0.801 0.811
Citeseer 0.687 0.684 0.692 0.693 0.695 0.706

LastFM Asia 0.756 0.769 0.752 0.776 0.775 0.779
Amazon Computers 0.831 0.833 0.834 0.842 0.848 0.849
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Figure 4: Study of ClusterSCL under different sizes of labeled training data.

5.3 Study of CDA (RQ2)
This subsection aims to verify the effectiveness of the cluster-aware

data augmentation (CDA). To do this, we introduce a variant model

called Group Sensitive SupCon (GS-SupCon) by firstly performing

METIS on the graph to obtain several highly interconnected graph

communities, then pulling nodes of the same class within the same

graph community. GS-SupCon is similar to GS-TRS [1] proposed for

fine-grained visual recognition. As reported in Table 3, GS-SupCon

derives comparable or better performance compared with SupCon.

This implies that modeling the intra-class variances and inter-class

similarities is useful for supervised contrastive learning. For the

proposed ClusterSCL, it outperforms GS-SupCon on most of the

datasets. ClusterSCL considers the positive sample pairs that locate

across different clusters, which are overlooked by GS-SupCon.

5.4 Study of ClusterSCL under Different Sizes of
Labeled Training Data (RQ3)

In this subsection, we vary the number of nodes per class in the

training set to analyze how ClusterSCL performs under different

sizes of labeled training data. We set GAT-encoder as the backbone.

Taking Cora, Pubmed and Citeseer as the examples, we report the

experimental results in Figure 4. We can see that more labeled

training data benefits the model performance. With the increase

of the labeled training data, we observe that SupCon fails to out-

perform CE on Cora and Citeseer. The reason could be that more

labeled training instances are likely to amplify the negative im-

pacts induced by intra-class variances and inter-class similarities.

ClusterSCL consistently outperforms CE and SupCon to further

demonstrate its superiority.

6 CONCLUSION
This work piloted studies on supervised learning of graph neural

networks for node classification. We propose a simple and effec-

tive contrastive learning scheme called Cluster-Aware Supervised
Contrastive Learning (ClusterSCL). ClusterSCL improves upon

supervised contrastive (SupCon) learning and emphasizes the effec-

tiveness of retaining intrinsic graph property during the SupCon

learning, such that the negative impacts induced by intra-class

variances and inter-class similarities can be reduced. ClusterSCL

shows advantages over the popular cross-entropy, SupCon and

other graph contrastive losses. We believe that the thought of Clus-

terSCL is not restricted to node classification on graphs, and could

be inspiring for the research on representation learning.
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A DERIVATION OF ELBO
Here we show how to obtain the ELBO in Eq. 10. Given any node 𝑣 ,

its surrogate label 𝑠 and the index of its latent cluster 𝑐 , log 𝑝 (𝑠 |𝑣)
can be written as:

log 𝑝 (𝑠 |𝑣) = log

𝑝 (𝑣, 𝑠) 𝑝 (𝑐 |𝑣, 𝑠)
𝑝 (𝑣) 𝑝 (𝑐 |𝑣, 𝑠)

= log

𝑝 (𝑣, 𝑠, 𝑐)
𝑝 (𝑣) 𝑝 (𝑐 |𝑣, 𝑠)

= log

𝑝 (𝑠 |𝑣, 𝑐) 𝑝 (𝑣, 𝑐)
𝑝 (𝑣) 𝑝 (𝑐 |𝑣, 𝑠)

= log

𝑝 (𝑠 |𝑣, 𝑐) 𝑝 (𝑐 |𝑣)
𝑝 (𝑐 |𝑣, 𝑠)

= log 𝑝 (𝑠 |𝑣, 𝑐) − log 𝑝 (𝑐 |𝑣, 𝑠) + log 𝑝 (𝑐 |𝑣)

= log 𝑝 (𝑠 |𝑣, 𝑐) − log

𝑝 (𝑐 |𝑣, 𝑠)
𝑞 (𝑐 |𝑣, 𝑠) + log

𝑝 (𝑐 |𝑣)
𝑞 (𝑐 |𝑣, 𝑠)

(15)

We integrate both sides of the above equation.

For the left-hand side,∫
𝑞 (𝑐 |𝑣, 𝑠) log 𝑝 (𝑠 |𝑣) 𝑑𝑐 = log 𝑝 (𝑠 |𝑣)

∫
𝑞 (𝑐 |𝑣, 𝑠) 𝑑𝑐

= log 𝑝 (𝑠 |𝑣)
(16)

For the right-hand side,∫
𝑞 (𝑐 |𝑣, 𝑠) log 𝑝 (𝑠 |𝑣, 𝑐) 𝑑𝑐 −

∫
𝑞 (𝑐 |𝑣, 𝑠) log 𝑝 (𝑐 |𝑣, 𝑠)

𝑞 (𝑐 |𝑣, 𝑠) 𝑑𝑐

+
∫

𝑞 (𝑐 |𝑣, 𝑠) log 𝑝 (𝑐 |𝑣)
𝑞 (𝑐 |𝑣, 𝑠)𝑑𝑐

= E𝑞 (𝑐 |𝑣,𝑠) [log 𝑝 (𝑠 |𝑣, 𝑐)] + KL (𝑞 (𝑐 |𝑣, 𝑠) | |𝑝 (𝑐 |𝑣, 𝑠))
− KL (𝑞 (𝑐 |𝑣, 𝑠) | |𝑝 (𝑐 |𝑣))

≥ E𝑞 (𝑐 |𝑣,𝑠) [log 𝑝 (𝑠 |𝑣, 𝑐)] − KL (𝑞 (𝑐 |𝑣, 𝑠) | |𝑝 (𝑐 |𝑣))

(17)

where the inequality holds due to KL (𝑞 (𝑐 |𝑣, 𝑠) | |𝑝 (𝑐 |𝑣, 𝑠)) ≥ 0.

Thus, we can derive the ELBO:

log 𝑝 (𝑠 |𝑣) ≥ E𝑞 (𝑐 |𝑣,𝑠) [log 𝑝 (𝑠 |𝑣, 𝑐)]−KL (𝑞 (𝑐 |𝑣, 𝑠) | |𝑝 (𝑐 |𝑣)) (18)

B WHY USE THE BATCH-BASED
DISCRIMINATOR

Strictly, ClusterSCL predicts the surrogate label 𝑠𝑖 of the given node

𝑣𝑖 via Eq. 6, which is prohibitive for large-scale datasets. Thus, we

provide an estimator to efficiently calculate within a batch,

𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ) =
exp

(
h⊺
𝑖
˜h𝑠𝑖 /𝜏

)
∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

) (19)

The main objective of ClusterSCL is to maximize the ELBO

LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ). For any given variational distribution𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ),
the ELBO in Eq. 10 can be written as:

LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 )
= E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) [log 𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 )] − KL (𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) | |𝑝 (𝑐𝑖 |𝑣𝑖 ))

= E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) log
exp

(
h⊺
𝑖
˜h𝑠𝑖 /𝜏

)
∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

) − KL (𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) | |𝑝 (𝑐𝑖 |𝑣𝑖 ))

= E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) log
exp

(
h⊺
𝑖
˜h𝑠𝑖 /𝜏

)
∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

) − KL (𝑞 (𝑐𝑖 |𝑣𝑖 , 𝑠𝑖 ) | |𝑝 (𝑐𝑖 |𝑣𝑖 ))

+ E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) log

∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
= ˜LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) + E𝑞 (𝑐𝑖 |𝑣𝑖 ,𝑠𝑖 ) log

∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
(20)

where
˜LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) adopts the batch-based estimator of𝑝 (𝑠𝑖 |𝑣𝑖 , 𝑐𝑖 ).

Since h are ℓ2-normalized node representations, if we update the

cluster prototypes via Eq. 13 before each batch training, we can

derive that: ∑︁
𝑣𝑗 ∈𝐵\{𝑣𝑖 }

exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
≥ (|𝐵 | − 1) exp

(
−1
𝜏

)
(21)∑︁

𝑣𝑗 ∈𝑉 \{𝑣𝑖 }
exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
≤ (|𝑉 | − 1) exp

(
1

𝜏

)
(22)

Since they are both positive, we can derive that:

log

∑
𝑣𝑗 ∈𝐵\{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

)
∑
𝑣𝑗 ∈𝑉 \{𝑣𝑖 } exp

(
h⊺
𝑖
˜h𝑗/𝜏

) ≥ log

|𝐵 | − 1

|𝑉 | − 1

− 2

𝜏
(23)

We can further derive a bound of the ELBO:

LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) ≥ ˜LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) + log

|𝐵 | − 1

|𝑉 | − 1

− 2

𝜏
(24)

where log
|𝐵 |−1
|𝑉 |−1−

2

𝜏 is a constant. Somaximizing
˜LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 )

indirectly maximizes LELBO (𝜽 ,w; 𝑣𝑖 , 𝑠𝑖 ) to some extent.

In practice, we update the cluster prototypes via Eq. 13 after

each training epoch for training efficiency, and can obtain good

experimental results.

C COMPLEXITY ANALYSIS
Here we provide the complexity analysis of ClusterSCL. Given the

dimension of node embeddings 𝑑 , the batch size 2𝑁 , the number of

clusters𝑀 , ClusterSCL’s time complexity is O
(
𝑁 2 (𝑑 +𝑀) + 𝑁𝑀𝑑

)
.

For reference, the time complexity of SupCon is O
(
𝑁 2𝑑

)
. Notice

that 𝑑 and𝑀 are relatively small, the time complexity of ClusterSCL

can be approximate to that of SupCon. Additionally, since the GNN

encoders have much fewer parameters than encoders used in CV

and NLP, the batch size is not required to be too large.
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