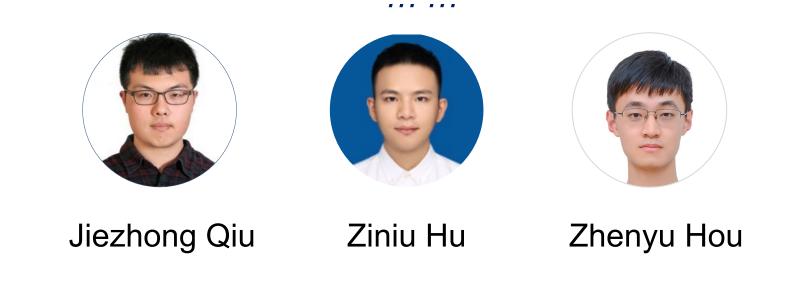
Graph Pre-Training: From GPT-GNN to GraphMAE to GCC

Yuxiao Dong Knowledge Engineering Group (KEG) CS, Tsinghua University

https://keg.cs.tsinghua.edu.cn/yuxiao

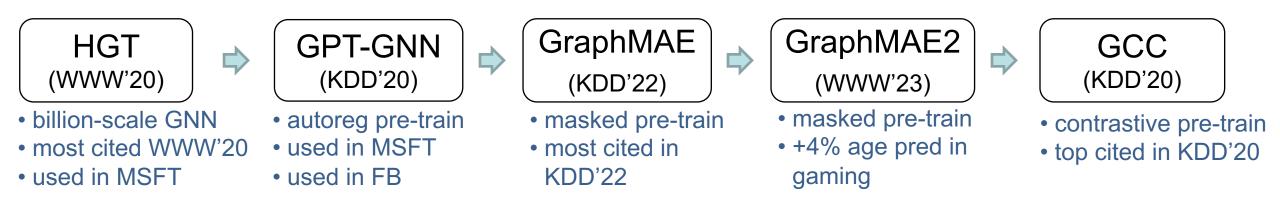
Joint Work with

Jiezhong Qiu, Ziniu Hu, Zhenyu Hou, Wenzheng Feng, Xiao Liu Yukuo Cen, Weihua Hu, Jie Zhang, Chenhui Zhang, Yuyang Xie Hao Ma, Wenjian Yu, Yizhou Sun, Jure Leskovec, Jie Tang

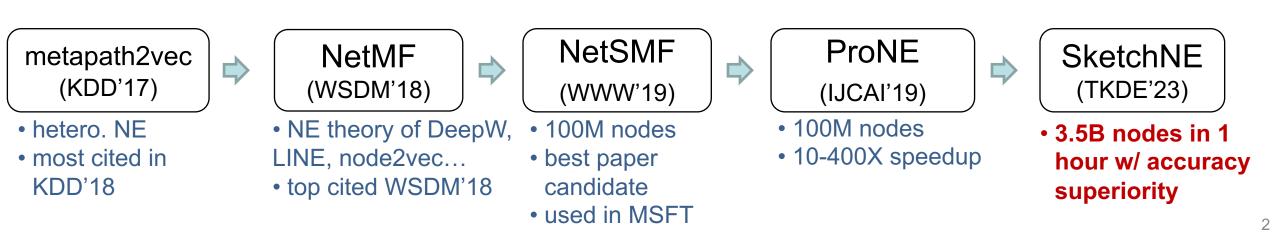


Papers & code & data at https://keg.cs.tsinghua.edu.cn/yuxiao/

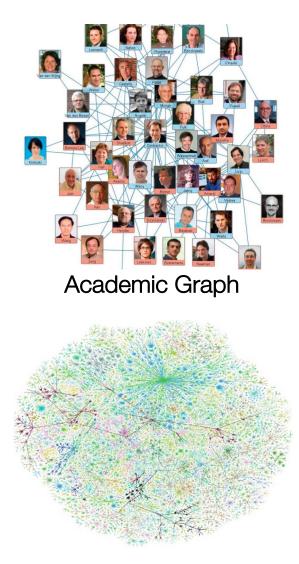
Graph Pre-Training



Structural Embedding

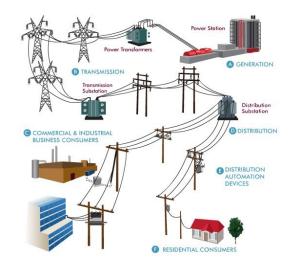


Graphs in Society



Internet

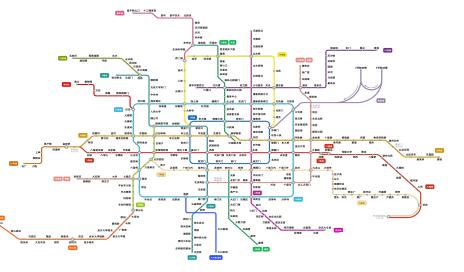
Social & Office Graph



Electrical Grid Network

Bing Bing

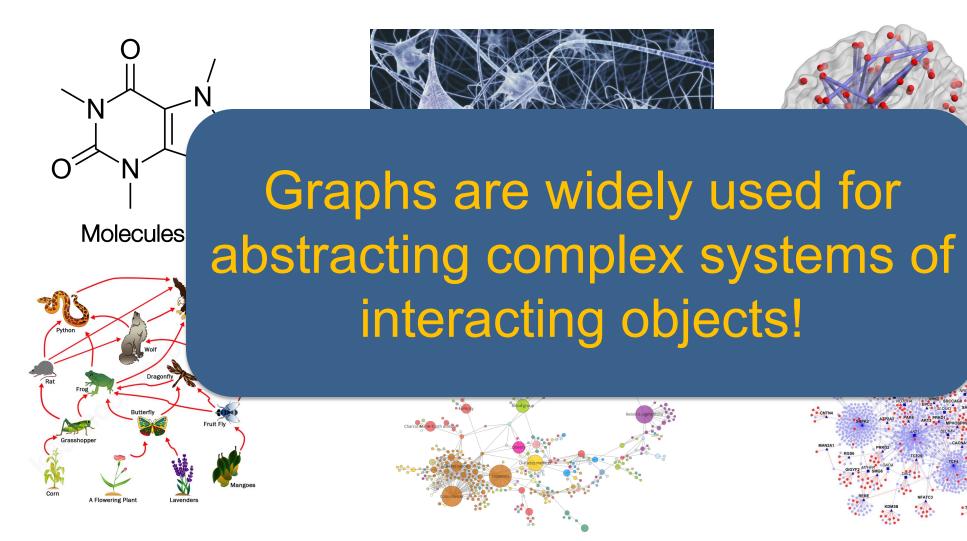
Knowledge Graph



Transportation

figure credit: Web

Graphs in Nature



orks

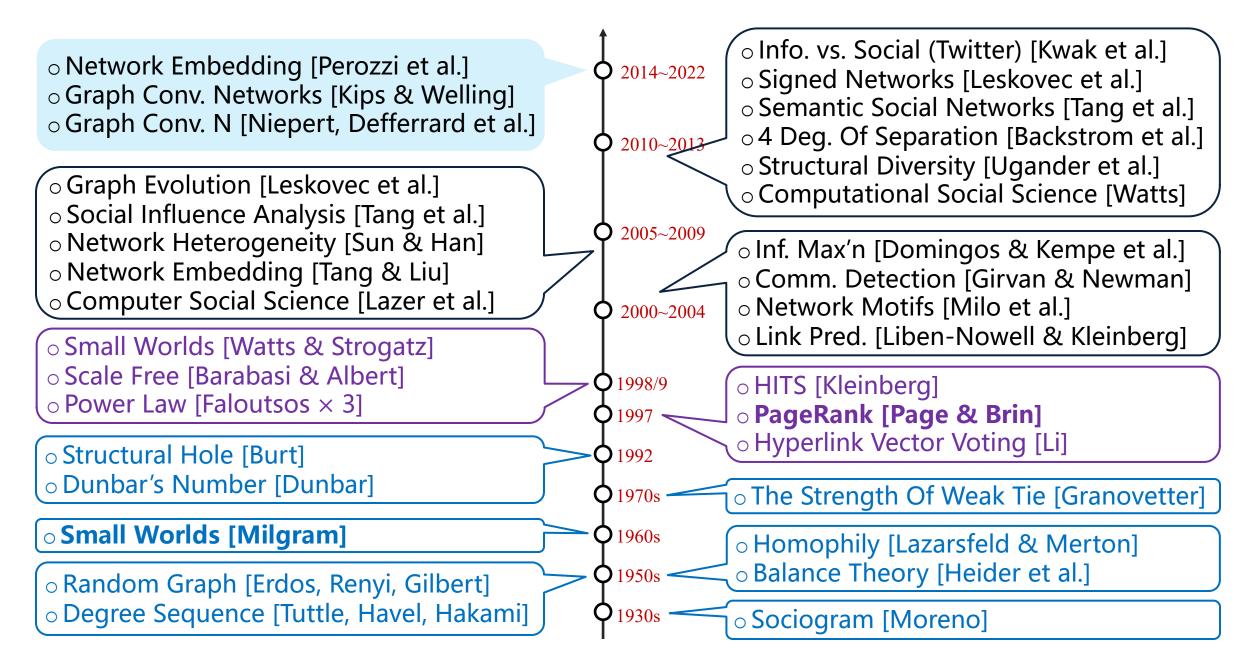
Protein-Protein Interactions

Food Web

Human Disease Networks

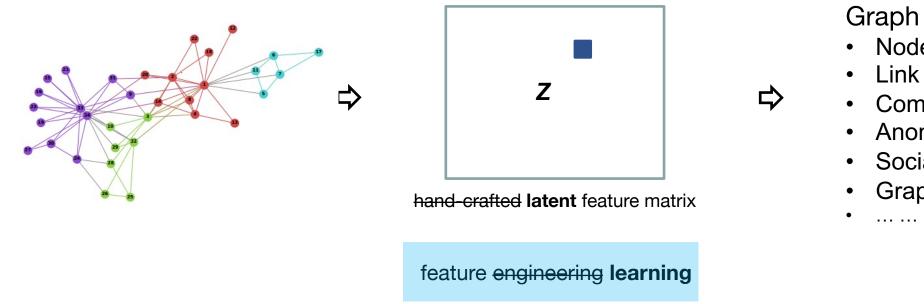
figure credit: Web

Graph & Network Research



5

Graph Representation Learning

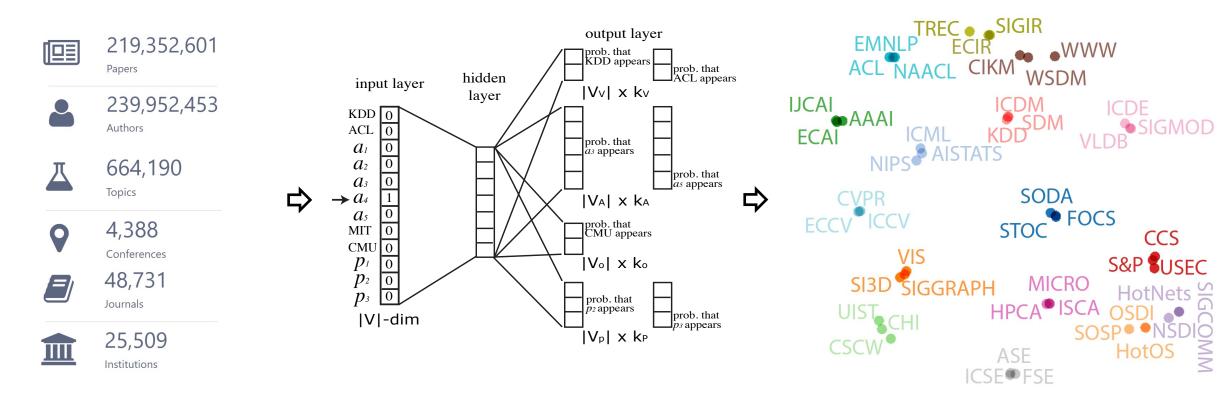


- Input: a network G = (V, E)
- Output: $\mathbf{Z} \in R^{|V| \times k}$, $k \ll |V|$, k-dim vector \mathbf{Z}_{v} for each node v.

Graph & Network applications

- Node classification
- Link prediction
- Community detection
- Anomaly detection
- Social influence
- Graph evolution

Graph Representation Learning: An Example



- Input: a graph G = (V, E)
- Output: $\mathbf{Z} \in R^{|V| \times k}$, $k \ll |V|$, k-dim vector \mathbf{Z}_{v} for each node v.

Dong, Chawla, Swami. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

Graph Representation Learning: An Example

Microsoft Academic

nature

NEAR HORIZON

X

99 Sign up /

■ Nature

Nature

257,560 Papers **99** 23,827,633 Citations*

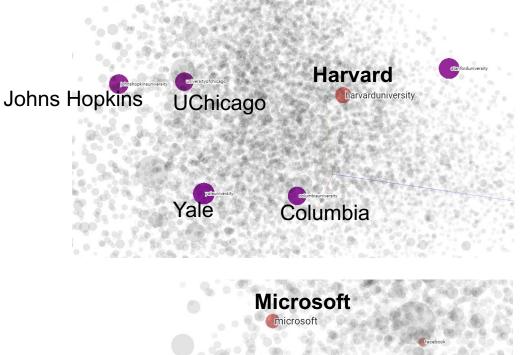
About

Nature is a British weekly scientific journal founded and based in London, England. As a multidisciplinary publication Nature features peer-reviewed research from a variety of academic disciplines, mainly in science, technology, and the natural sciences. It has core editorial offices across the United States, continental Europe, and Asia under the international scientific publishing company Springer Nature. Nature was one of the world's most cited scientific journals by the Science Edition of the 2019 Journal Citation Reports (with an ascribed impact factor of 42.778), making it one of the world's most-read and most prestigious academic journals. As of 2012, it claimed an online readership of about 3 million unique readers per month.

Website Links

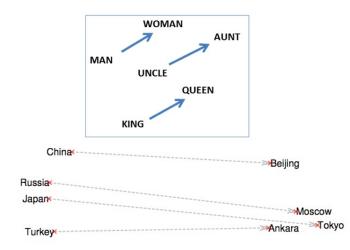
nature.com | en.wikipedia.org

Related Journals

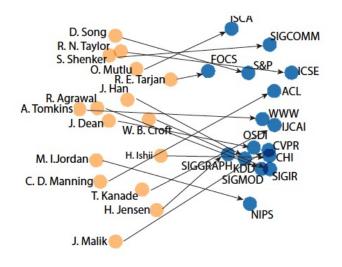


Facebook

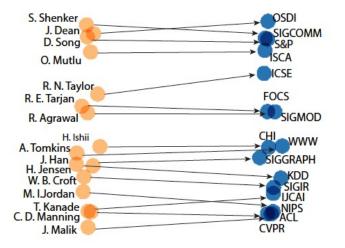
Graph Representation Learning: An Example



word2vec [Mikolov, 2013]



DeepWalk / node2vec



metapath2vec

Dong, Chawla, Swami. metapath2vec: scalable representation learning for heterogeneous networks. In KDD 2017.

(Tr)Billion-Scale, Heterogeneous, Dynamic, No Labels, Many Tasks

Microsoft/AMiner Academic Graph

LinkedIn Economic Graph

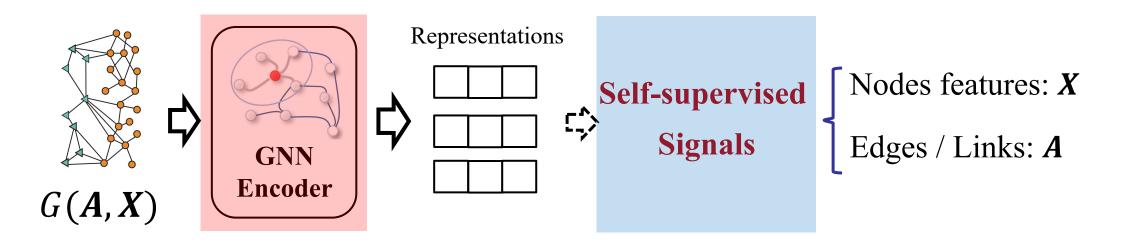
Microsoft Office Graph

Facebook Entity Graph

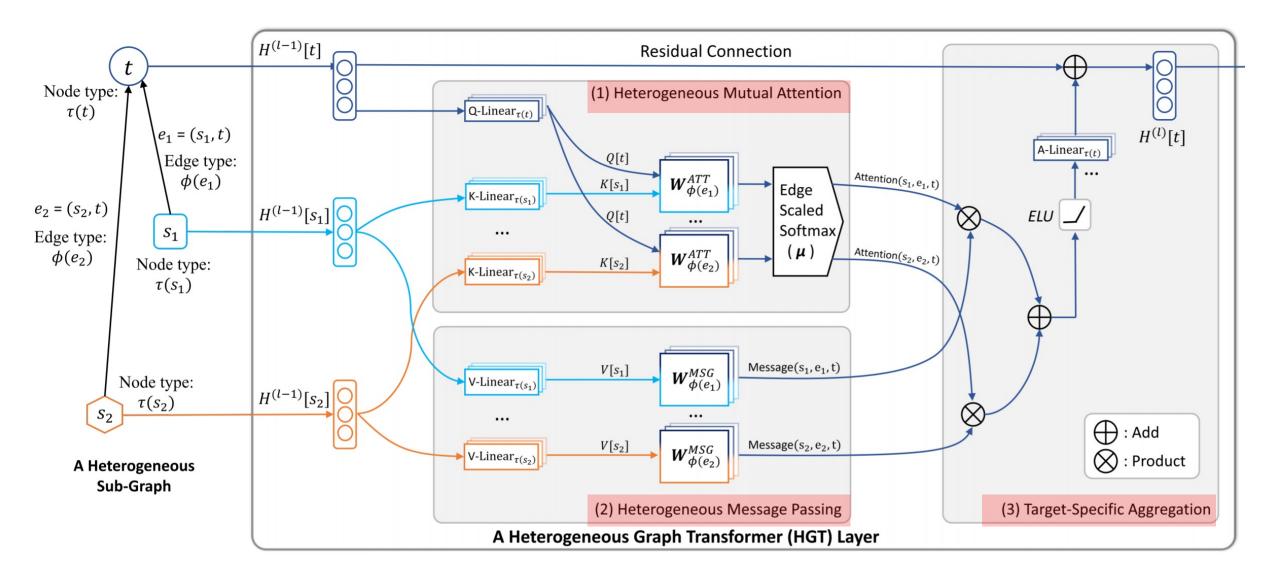
Figure Credit: Microsoft/LinkedIn/Facebook

GNN Pre-Training

- Supervise graph models by using unlabeled data
 - Task-specific labeled data *Expensive to obtain*
 - Unlabeled data *Abundant*
- How to utilize unlabeled data effectively?
 - Self-supervised learning



Heterogeneous Graph Transformer (HGT)



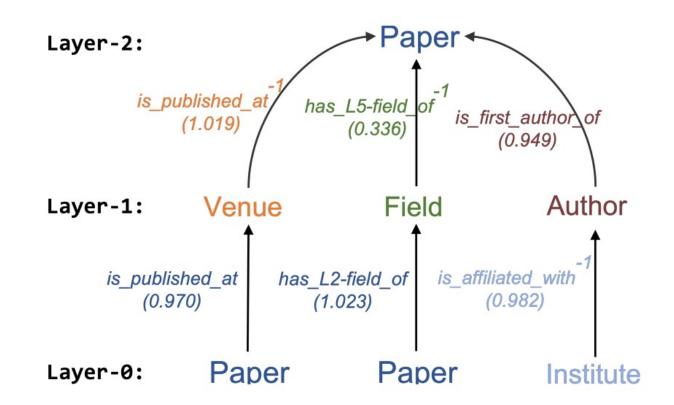
Hu, et al. Heterogeneous Graph Transformer. WWW 2020. Most cited in WWW'20.

Case Study

Experiments done w/o 2020 data!

Venue	Time	Top–5 Most Similar Venues	
WWW	2000	SIGMOD, VLDB, NSDI, GLOBECOM, SIGIR	DB + Networking + IR
	2010	GLOBECOM, KDD, CIKM, SIGIR, SIGMOD	
	2020	KDD, GLOBECOM, SIGIR, WSDM, SIGMOD	DM + Networking + IR + DB
KDD	2000	SIGMOD, ICDE, ICDM, CIKM, VLDB	DB + DM
	2010	ICDE, WWW, NeurIPS, SIGMOD, ICML	
	2020	NeurIPS, SIGMOD, WWW, AAAI, EMNLP	ML + DB + Web + AI + NLP!!!
NeurIPS	2000	ICCV, ICML, ECCV, AAAI, CVPR	CV + ML + AI
	2010	ICML, CVPR, ACL, KDD, AAAI	
	2020	ICML, CVPR, ICLR, ICCV, ACL	ML + CV + DL + NLP

What is the Best Part of HGT?



Learn meta-paths & their weights implicitly and automatically!

Hu, Dong, Wang, Sun. Heterogeneous Graph Transformer. WWW 2020.

Powering the Microsoft Office Graph

One enterprise graph (monthly)

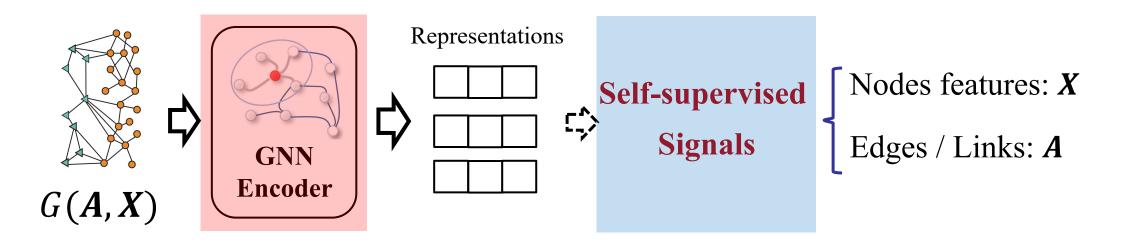
- 1.6 billion entities • 7 types of entities
- 7.8 trillion edges

Anomaly detection on Microsoft Office Graph

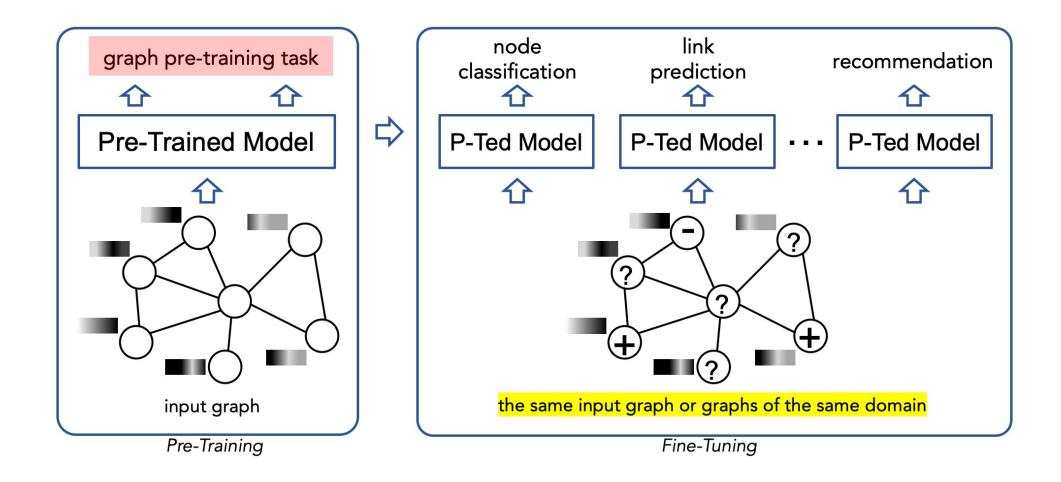
	Prec.	Recall	F1	Accu.
GraphSage	+0.00	+0.09	+0.06	+0.03
Graph Attention	+0.01	+0.11	+0.08	+0.03
HGT	+0.01	+0.30	+0.19	+0.07

GNN Pre-Training

- Supervise graph models by using unlabeled data
 - Task-specific labeled data *Expensive to obtain*
 - Unlabeled data *Abundant*
- How to utilize unlabeled data effectively?
 - Self-supervised learning

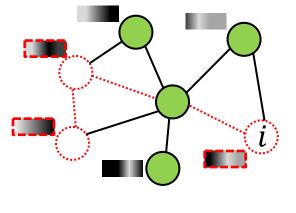


GNN Pre-Training



- Model the graph distribution $p(G; \theta)$ by learning to reconstruct the input graph.
 - Factorize the graph likelihood into two terms:
 - Attribute Generation
 - Edge Generation

$$\log p_{\theta}(X, E) = \sum_{i=1}^{|\mathcal{V}|} \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i}).$$



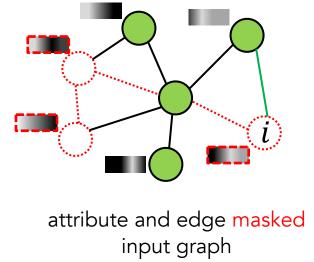
attribute and edge masked input graph

 $p_{\theta}(X_i, E_i | X_{< i}, E_{< i})$ = $p_{\theta}(X_i | X_{< i}, E_{< i}) \cdot p_{\theta}(E_i | X_{< i}, E_{< i})$

Lose the dependency between X_i and E_i

- Model the graph distribution $p(G; \theta)$ by learning to reconstruct the input graph.
 - Factorize the graph likelihood into two terms:
 - Attribute Generation: given observed edges, generate node attributes
 - Edge Generation: given observed edges and generated attributes, generate masked edges

$$\log p_{\theta}(X, E) = \sum_{i=1}^{|\mathcal{V}|} \log p_{\theta}(X_i, E_i \mid X_{\leq i}, E_{\leq i}).$$

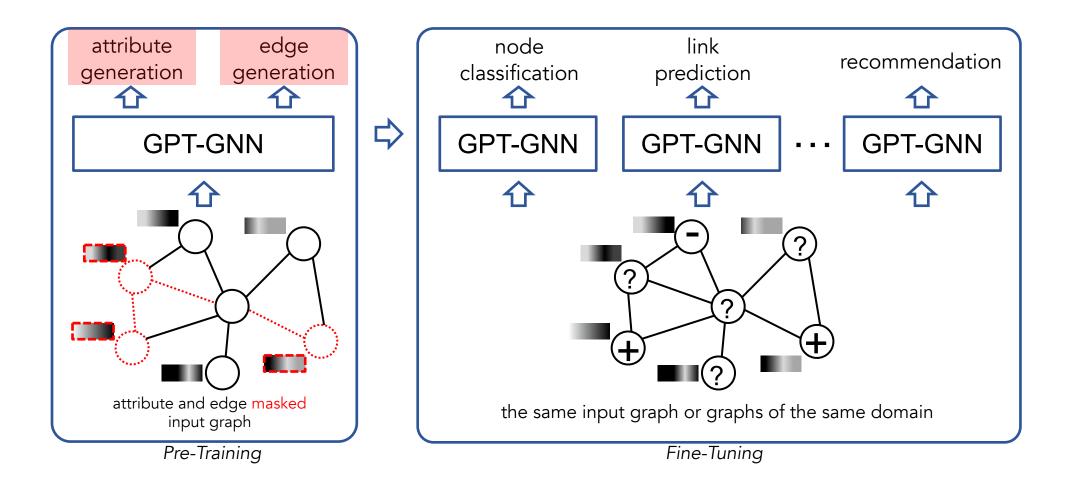


$$p_{\theta}(X_{i}, E_{i} \mid X_{< i}, E_{< i})$$

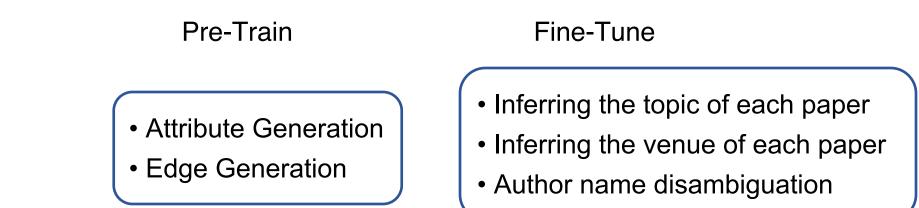
$$= \sum_{o} p_{\theta}(X_{i}, E_{i,\neg o} \mid E_{i,o}, X_{< i}, E_{< i}) \cdot p_{\theta}(E_{i,o} \mid X_{< i}, E_{< i})$$

$$= \mathbb{E}_{o} \Big[p_{\theta}(X_{i}, E_{i,\neg o} \mid E_{i,o}, X_{< i}, E_{< i}) \Big]$$

$$= \mathbb{E}_{o} \Big[\underbrace{p_{\theta}(X_{i} \mid E_{i,o}, X_{< i}, E_{< i})}_{1) \text{ generate attributes}} \cdot \underbrace{p_{\theta}(E_{i,\neg o} \mid E_{i,o}, X_{\leq i}, E_{< i})}_{2) \text{ generate edges}} \Big].$$



• Data: Microsoft Academic Graph

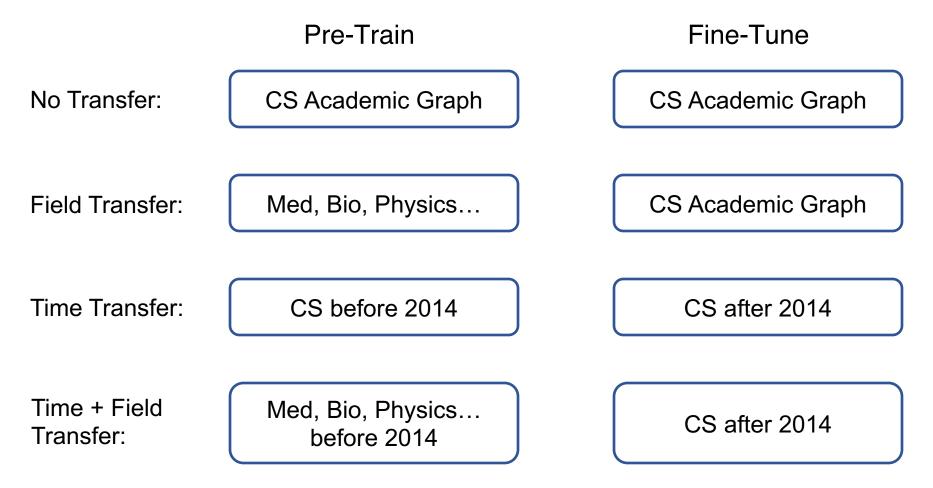


Base GNN model:

Tasks:

Heterogeneous Graph Transformer (HGT)

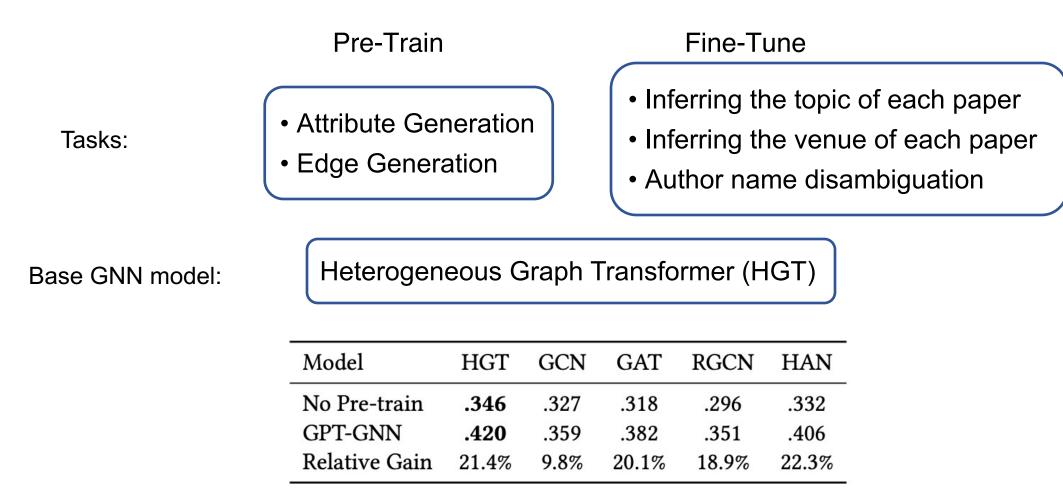
• Data: Microsoft Academic Graph



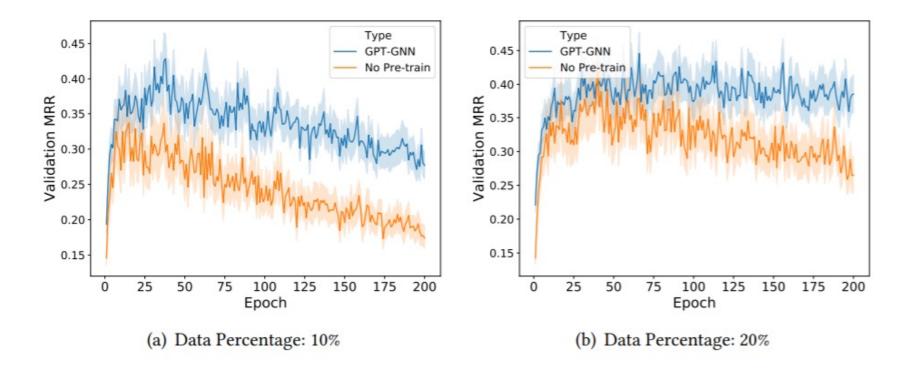
	Downstream Dataset	OAG				
	Evaluation Task	Paper–Field	Paper-Venue	Author ND		
	No Pre-train	$.346 \pm .149$	$.598 \pm .122$.813±.105		
er	GAE	.403±.114	.626±.093	.836±.084		
ransf	GraphSAGE (unsp.) Graph Infomax	$.368 \pm .125$ $.387 \pm .112$.609±.096 .612±.097	.818±.092 .827±.084		
Field Transfer	GPT-GNN (Attr) GPT-GNN (Edge)	$.396 \pm .118$ $.413 \pm .109$	$.623 \pm .105$ $.635 \pm .096$.834±.086 .842±.093		
Щ	GPT-GNN	.420±.107	.641±.098	.848±.102		
Time Transfer	GAE GraphSAGE (unsp.) Graph Infomax	.384±.117 .352±.121 .369±.116	.619±.101 .601±.105 .606±.102	.828±.095 .815±.093 .821±.089		
	GPT-GNN (Attr) GPT-GNN (Edge) GPT-GNN	.374±.114 .397±.105 .405±.108	.614±.098 .629±.102 .635±.101	.826±.089 .836±.088 .840±.093		
[ransfer	GAE GraphSAGE (unsp.) Graph Infomax	$.371 \pm .124$ $.349 \pm .130$ $.360 \pm .121$.611±.108 .602±.118 .600±.102	.821±.102 .812±.097 .815±.093		
Time + Field Transfer	GPT-GNN (Attr) — (w/o node separation) GPT-GNN (Edge) — (w/o adaptive queue) GPT-GNN	$.364 \pm .115$ $.347 \pm .128$ $.390 \pm .116$ $.376 \pm .121$ $.397 \pm .112$.609±.103 .601±.102 .622±.104 .617±.115 .628±.108	.824±.094 .813±.108 .830±.105 .828±.104 .833±.102		

- All pre-training frameworks help the performance of GNNs
 - o GAE, GraphSage, Graph Infomax
 - o GPT-GNN
- **GPT-GNN helps the most** by achieving a relative performance gain of 9.1% over the base model without pre-training
- Both self-supervised tasks in GPT-GNN help the pre-training framework
 - o Attribute generation
 - Edge generation

Data: Microsoft Academic Graph

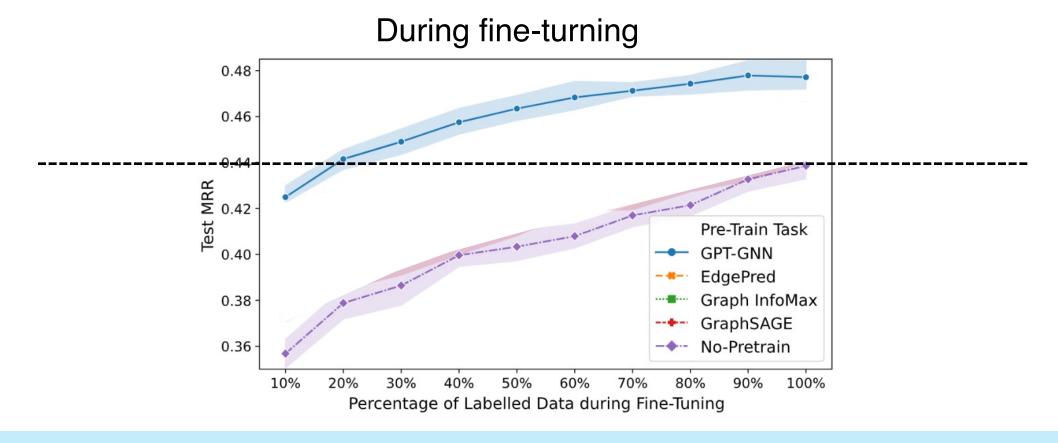


The Promise of Graph Pre-Training!



Predict Paper Title	GroundTruth Paper Title
person recognition system using automatic probabilistic classification	person re-identification by probabilistic relative distance comparison
a novel framework using spectrum sensing in wireless systems	a secure collaborative spectrum sensing strategy in cyber physical systems
a efficient evaluation of a distributed data storage service storage	an empirical analysis of a large scale mobile cloud storage service
parameter control in wireless sensor networks networks networks	optimal parameter estimation under controlled communication over sensor networks
a experimental system for for to the analysis of graphics	an interactive computer graphics approach to surface representation

The Promise of Graph Pre-Training!



The GNN model **w/o** pre-training with **100%** training data **VS** The pre-trained GNN model with **10-20%** training data

Powering the Microsoft Office Graph

One enterprise graph (monthly)

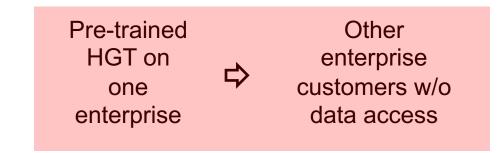
• 1.6 billion entities

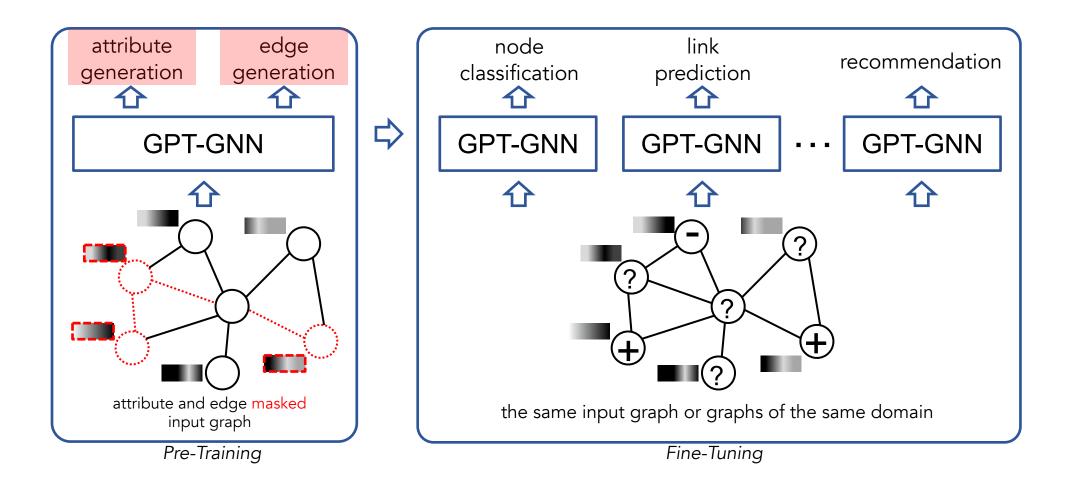
 $_{\odot}$ 7 types of entities

• 7.8 trillion edges

Anomaly detection on Microsoft Office Graph

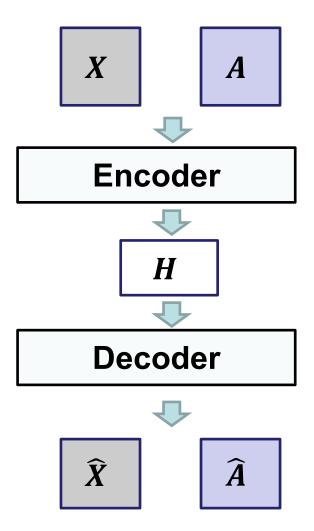
	Prec.	Recall	F1	Accu.
GraphSage	+0.00	+0.09	+0.06	+0.03
Graph Attention	+0.01	+0.11	+0.08	+0.03
HGT	+0.01	+0.30	+0.19	+0.07





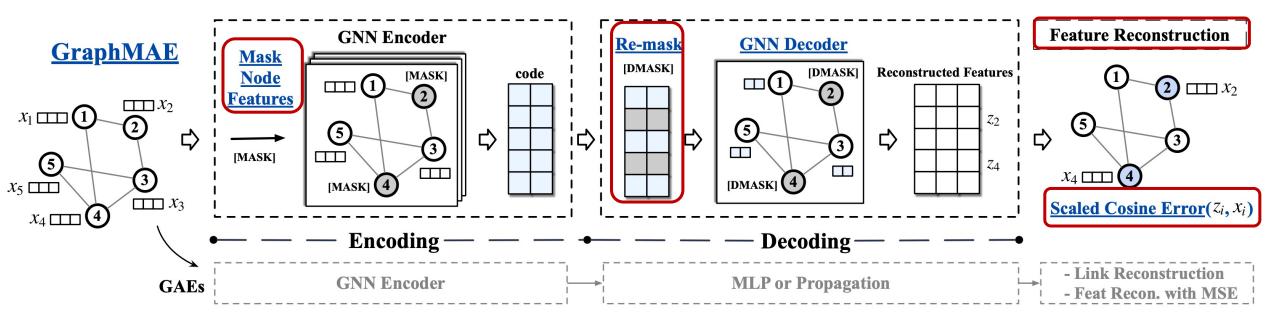
Graph AutoEncoder

- G = (V, A, X)
 - $A \in \{0, 1\}^{N \times N}$: adjacency matrix
 - − $X \in \mathbb{R}^{N \times d}$: node features
- Encoding
 - $H = f_E(A, X)$
- Decoding
 - $G' = f_D(A, H)$
- Reconstruction objectives
 - graph structure (link)
 - node features

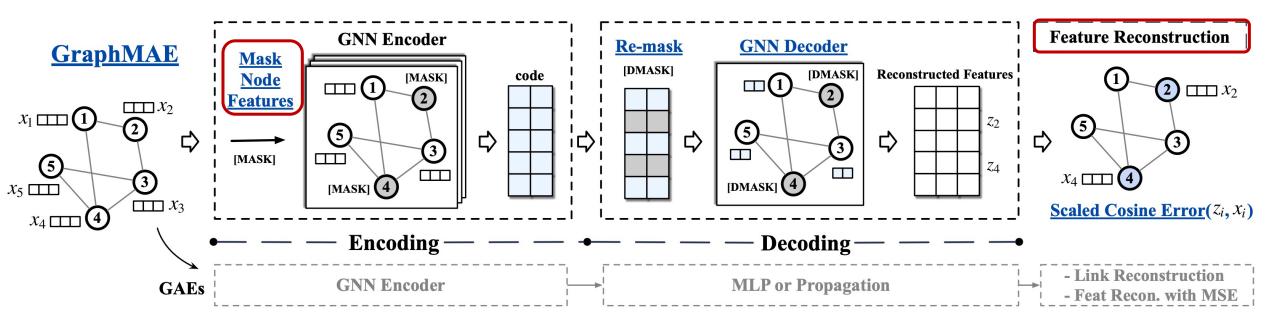


		Reconstruction Target		tion	Decoding Strategy		
Methods	Feat. Loss	AE	No Struc.	Mask Feat.	GNN Decoder	Re-mask Dec.	Space
VGAE [20]	n/a	\checkmark		-	-	-	$O(N^2)$
ARVGA [26]	n/a	\checkmark	-	-	-	-	$O(N^2)$
MGAE [42]	MSE	\checkmark	-	\checkmark	-	-	O(N)
GALA [27]	MSE	\checkmark	\checkmark	-	\checkmark	-	O(N)
GATE [31]	MSE	\checkmark	-	-	\checkmark	-	O(N)
AttrMask [16]	CE	\checkmark	\checkmark	\checkmark	-	-	O(N)
GPT-GNN [17]	MSE	-	-	\checkmark	-	-	O(N)
AGE [3]	n/a	\checkmark	-	-	-	-	$O(N^2)$
NodeProp [18]	MSE	\checkmark	\checkmark	\checkmark	-	-	O(N)
F	n		onstruc Methoo				

GraphMAE



Masked Feature Reconstruction

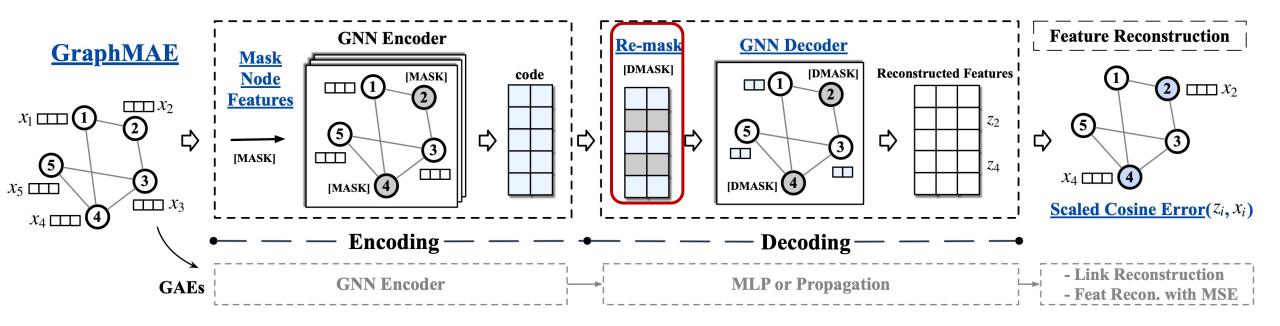


- Feature construction as the learning objective
- Masked feature reconstruction
 - 1. Sample a subset of nodes $\widetilde{V} \subset V$
 - 2. Replace node feature with [MASK]

$$\widetilde{\mathbf{x}}_{i} = \begin{cases} \mathbf{x}_{[M]} & v_{i} \in \widetilde{\mathcal{V}} \\ \mathbf{x}_{i} & v_{i} \notin \widetilde{\mathcal{V}} \end{cases}$$

• $H = f_{E}(A, \widetilde{X})$

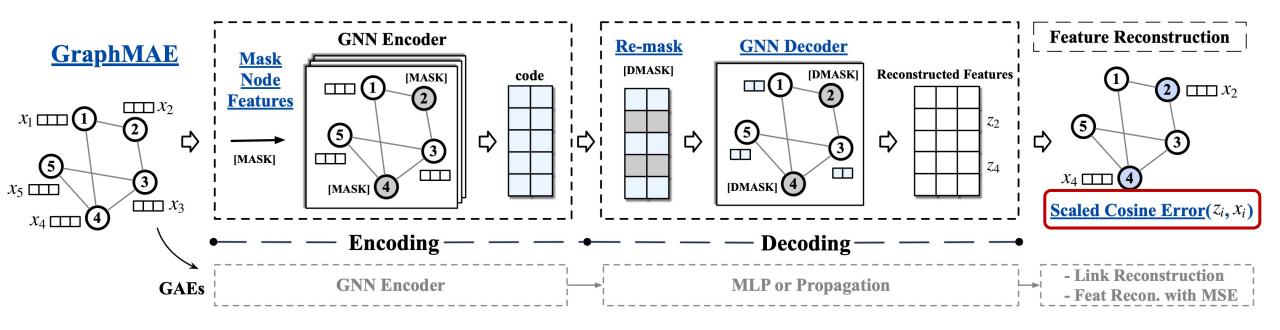
GNNs as Decoder with Re-Mask Decoding



- Use a GNN as the decoder
 - A more expressive decoder helps reconstruct low informative features
- · Re-mask node features before decoder
 - Re-mask the "masked" nodes

•
$$\widetilde{H} = \operatorname{Remask}(H), \ Z = f_D(A, \widetilde{H})$$
 $\widetilde{h}_i = \begin{cases} h_{[M]} & v_i \in \widetilde{\mathcal{V}} \\ h_i & v_i \notin \widetilde{\mathcal{V}} \end{cases}$

Scaled Cosine Error as the Criterion



- MSE fails, especially for continuous features
 - Sensitivity & low selectivity

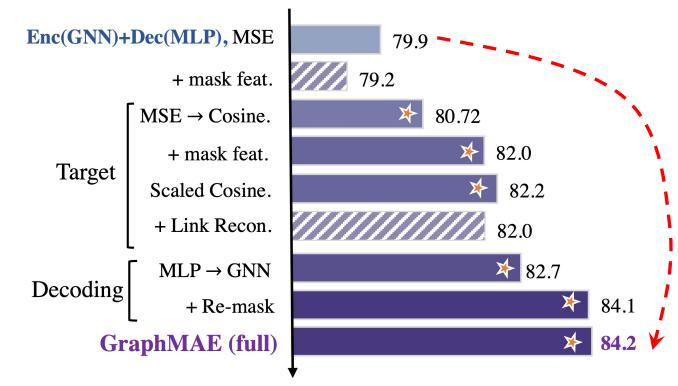
$$L_{MSE} = \frac{1}{|\tilde{V}|} \sum_{v_i \in \tilde{V}} (x_i - z_i)^2$$

- Scaled cosine error as the criterion
 - Cosine error & scaled coefficient

$$\mathcal{L}_{\text{SCE}} = \frac{1}{|\widetilde{\mathcal{V}}|} \sum_{v_i \in \widetilde{\mathcal{V}}} (1 - \frac{\boldsymbol{x}_i^T \boldsymbol{z}_i}{\|\boldsymbol{x}_i\| \cdot \|\boldsymbol{z}_i\|})^{\gamma}, \ \gamma \ge 1,$$

			onstruction Target		Decoding Strategy			
Methods	Feat. Loss	AE	No Struc.	Mask Feat.	GNN Decoder	Re-mask Dec.	Space	
VGAE [20]	n/a	\checkmark	-	-	-	-	$O(N^2)$	
ARVGA [26]	n/a	\checkmark	-	-	-	-	$O(N^2)$	
MGAE [42]	MSE	\checkmark	-	\checkmark	-	-	O(N)	
GALA [27]	MSE	\checkmark	\checkmark	-	\checkmark	-	O(N)	
GATE [31]	MSE	\checkmark	-	-	\checkmark	-	O(N)	
AttrMask [16]	CE	\checkmark	\checkmark	\checkmark	-	-	O(N)	
GPT-GNN [17]	MSE	-	-	\checkmark	-	-	O(N)	
AGE [3]	n/a	\checkmark	-	-	-	-	$O(N^2)$	
NodeProp [18]	MSE	\checkmark	\checkmark	\checkmark	-	-	O(N)	
GraphMAE	SCE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	O(N)	
F		onstruc Methoo						

GraphMAE



(b) The effect of GraphMAE designs on the performance on Cora dataset.

Table 4: Ablation studies of decoder type, re-mask and reconstruction criterion on node- and graph-level benchmarks.

	Dataset		Node-Leve		Graph-Level		
	Dutabet	Cora PubMed An		Arxiv	5	MUTAG	IMDB-B
10	GraphMAE	84.2	81.1	71.75		88.19	75.52
COMP.	w/o mask	79.7	77.9	70.97		82.58	74.42
COI	w/o re-mask	82.7	80.0	71.61		86.29	74.42
Ŭ	w/ MSE	79.1	73.1	67.44		86.30	74.04
	MLP	82.2	80.4	71.54		87.16	73.94
odei	GCN	81.3	79.1	71.59		87.78	74.54
Decoder	GIN	81.8	80.2	71.41		88.19	75.52
Ц	GAT	84.2	81.1	71.75		86.27	74.04

Downstream Tasks

Node Classification

Graph Classification

Table 1: Experiment results in unsupervised representation learning for <u>node classification</u>. We report Micro-F1(%) score for PPI and accuracy(%) for the other datasets.

Table 2: Experiment results in unsupervised representation learning for graph classification. We report accuracy(%) for all datasets.

	Dataset	Cora	CiteSeer	PubMed	Ogbn-arxiv	PPI	Reddit
C 1	GCN	81.5	70.3	79.0	71.74±0.29	75.7±0.1	95.3±0.1
Supervised	GAT	83.0±0.7	72.5 ± 0.7	$79.0 {\pm} 0.3$	$72.10 {\pm} 0.13$	$97.30 {\pm} 0.20$	96.0±0.1
	GAE	71.5±0.4	65.8±0.4	72.1±0.5	-	-	-
	GPT-GNN	80.1±1.0	68.4±1.6	76.3±0.8	-	-	-
	GATE	83.2±0.6	$71.8 {\pm} 0.8$	80.9±0.3	-	-	-
	DGI	82.3±0.6	71.8 ± 0.7	76.8 ± 0.6	$70.34 {\pm} 0.16$	$63.80 {\pm} 0.20$	94.0 ± 0.10
0.16	MVGRL	83.5±0.4	73.3 ± 0.5	80.1±0.7	-	-	-
Self-supervised	GRACE ¹	81.9±0.4	71.2 ± 0.5	80.6 ± 0.4	71.51 ± 0.11	69.71 ± 0.17	94.72 ± 0.04
	BGRL ¹	82.7±0.6	71.1 ± 0.8	79.6±0.5	71.64 ± 0.12	73.63 ± 0.16	94.22 ± 0.03
	InfoGCL	83.5±0.3	73.5±0.4	79.1±0.2	-	-	-
	CCA-SSG ¹	84.0 ± 0.4	73.1±0.3	$\underline{81.0\pm0.4}$	$71.24 {\pm} 0.20$	$73.34 {\pm} 0.17$	95.07 ± 0.02
	GraphMAE	84.2±0.4	73.4±0.4	81.1±0.4	71.75±0.17	74.50±0.29	96.01±0.08

	Dataset	IMDB-B	IMDB-M	PROTEINS	COLLAB	MUTAG	REDDIT-B	NCI1
Supervised	GIN	75.1±5.1	52.3 ± 2.8	76.2 ± 2.8	80.2±1.9	89.4±5.6	92.4±2.5	82.7±1.7
Supervised	DiffPool	72.6±3.9	-	75.1 ± 3.5	78.9 ± 2.3	85.0 ± 10.3	92.1±2.6	-
Crearly Vermale	WL	72.30±3.44	46.95±0.46	72.92 ± 0.56	-	80.72±3.00	68.82±0.41	80.31±0.46
Graph Kernels	DGK	66.96±0.56	44.55 ± 0.52	$73.30{\pm}0.82$	-	87.44 ± 2.72	78.04 ± 0.39	80.31 ± 0.46
	graph2vec	71.10±0.54	50.44 ± 0.87	73.30 ± 2.05	-	83.15±9.25	75.78±1.03	73.22±1.81
	Infograph	73.03±0.87	49.69 ± 0.53	74.44 ± 0.31	70.65 ± 1.13	89.01±1.13	82.50 ± 1.42	76.20 ± 1.06
	GraphCL	71.14±0.44	48.58 ± 0.67	74.39 ± 0.45	71.36 ± 1.15	86.80 ± 1.34	89.53±0.84	77.87 ± 0.41
0.10 1	JOAO	70.21±3.08	49.20 ± 0.77	74.55 ± 0.41	69.50 ± 0.36	87.35 ± 1.02	85.29±1.35	78.07 ± 0.47
Self-supervised	GCC	72.0	49.4	-	78.9	-	89.8	-
	MVGRL	74.20 ± 0.70	51.20 ± 0.50	-	-	89.70 ± 1.10	84.50 ± 0.60	-
	InfoGCL	75.10 ± 0.90	51.40 ± 0.80	-	80.00 ± 1.30	91.20±1.30	-	80.20 ± 0.60
	GraphMAE	75.52±0.66	51.63±0.52	75.30±0.39	80.32±0.46	88.19±1.26	88.01±0.19	80.40±0.30

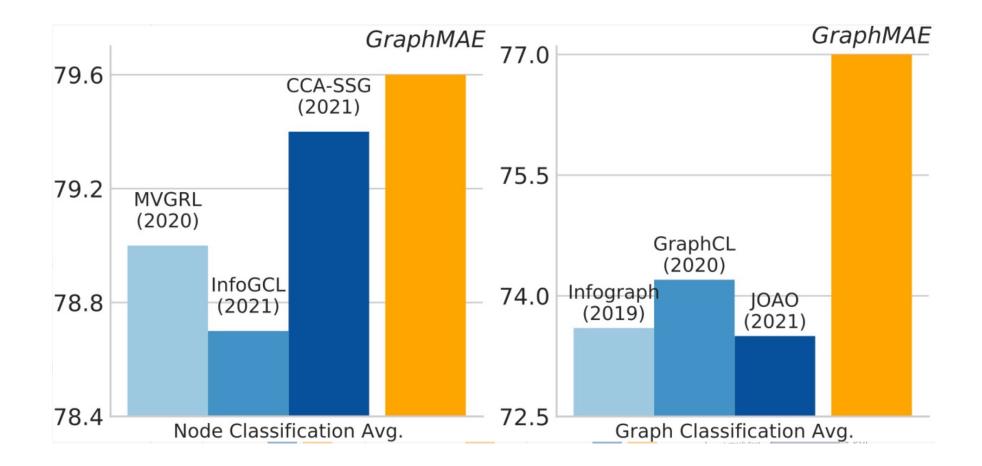
Transfer Learning

Table 3: Experiment results in transfer learning on molecular property prediction benchmarks. The model is first pre-trained on ZINC15 and then finetuned on the following datasets. We report ROC-AUC(%) scores.

	BBBP	Tox21	ToxCast	SIDER	ClinTox	MUV	HIV	BACE	Avg.
No-pretrain	65.5±1.8	74.3±0.5	63.3±1.5	57.2±0.7	58.2±2.8	71.7±2.3	75.4±1.5	70.0±2.5	67.0
ContextPred	64.3±2.8	75.7±0.7	63.9±0.6	60.9±0.6	65.9±3.8	75.8±1.7	77.3±1.0	79.6±1.2	70.4
AttrMasking	64.3±2.8	76.7±0.4	64.2±0.5	<u>61.0±0.7</u>	71.8±4.1	74.7±1.4	77.2 ± 1.1	79.3±1.6	71.1
Infomax	68.8 ±0.8	75.3 ±0.5	62.7 ± 0.4	58.4 ± 0.8	69.9±3.0	75.3 ±2.5	76.0 ± 0.7	75.9 ±1.6	70.3
GraphCL	69.7±0.7	73.9±0.7	62.4±0.6	60.5±0.9	76.0±2.7	69.8±2.7	78.5±1.2	75.4±1.4	70.8
JOAO	70.2±1.0	75.0±0.3	62.9±0.5	60.0±0.8	81.3±2.5	71.7±1.4	76.7±1.2	77.3±0.5	71.9
GraphLoG	72.5±0.8	75.7±0.5	63.5±0.7	61.2±1.1	76.7±3.3	76.0 ± 1.1	77.8 ± 0.8	83.5±1.2	<u>73.4</u>
GraphMAE	72.0±0.6	75.5±0.6	<u>64.1±0.3</u>	60.3±1.1	82.3±1.2	76.3±2.4	77.2±1.0	83.1±0.9	73.8

Code: <u>https://github.com/THUDM/GraphMAE</u>

GraphMAE: Masked Graph Pre-Training



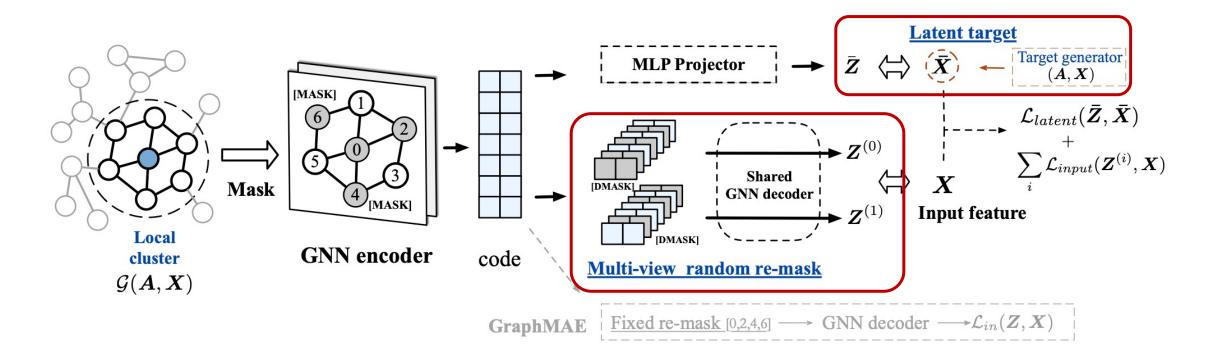
Hou et al. "GraphMAE: Self-supervised masked graph autoencoders." KDD'22

However...

- Problems in masked-feature-prediction
 - -more sensitive to the discriminability of input features.

	$Cora$ raw $\rightarrow w/PCA$	PubMed raw $\rightarrow w/PCA$
Supervised GraphMAE		$\begin{array}{c} 78.0 \rightarrow 77.0 \ (\downarrow 1.0) \\ 81.1 \rightarrow 78.9 \ (\downarrow 2.2) \end{array}$
GraphMAE2	84.5 → 83.5 (↓ 1.0)	$81.4 \rightarrow 80.1 \ (\downarrow 1.3)$

- *raw* : the original node features
- w/PCA: the input features are reduced to 50-dimensional vectors using PCA



- Multi-view random re-mask decoding
- Latent representation prediction
- Scaling to large-scale graphs with local clustering

Hou et al. GraphMAE2: A Decoding-enhanced Masked Self-supervised Graph Learner. WWW'23.

Linear Probing

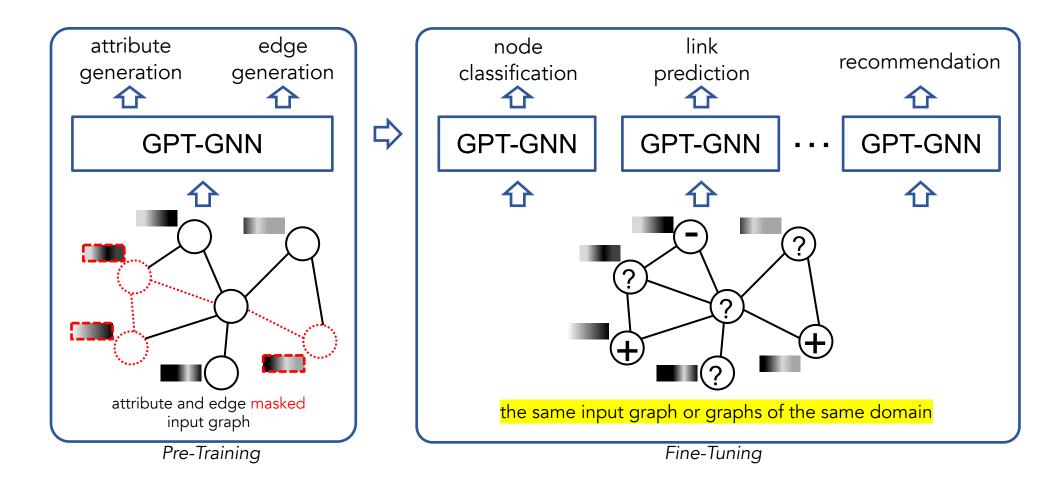
- Setting: training a linear classifier
- GraphMAE2 consistently outperforms all baselines
 - Improves GraphMAE on OGB benchmarks

	Arxiv	Products	MAG	Papers100M
MLP	55.50±0.23	61.06 ± 0.08	39.11 ± 0.21	47.24 ± 0.31
SGC	66.92 ± 0.08	$74.87{\scriptstyle \pm 0.25}$	$54.68{\scriptstyle\pm0.23}$	63.29 ± 0.19
Random-Init	68.14 ± 0.02	$74.04{\scriptstyle\pm0.06}$	$56.57{\scriptstyle\pm0.03}$	$61.55{\scriptstyle \pm 0.12}$
CCA-SSG	68.57±0.02	75.27 ± 0.05	51.55 ± 0.03	55.67±0.15
GRACE	69.34 ± 0.01	79.47 ± 0.59	$57.39{\scriptstyle \pm 0.02}$	61.21 ± 0.12
BGRL	70.51 ± 0.03	$78.59{\scriptstyle \pm 0.02}$	$57.57{\scriptstyle\pm0.01}$	62.18 ± 0.15
GGD^1	-	$75.70{\scriptstyle \pm 0.40}$	-	63.50 ± 0.50
GraphMAE	$\underline{71.03{\scriptstyle\pm0.02}}$	$78.89{\scriptstyle \pm 0.01}$	$\underline{58.75{\scriptstyle\pm0.03}}$	$62.54{\scriptstyle\pm0.09}$
GraphMAE2	71.89 ±0.03	81.59 ±0.02	59.24 ±0.01	64.89 ±0.04

Code: <u>https://github.com/THUDM/GraphMAE2</u>

OGB benchmarks

GNN Pre-Training on the "Same" Networks

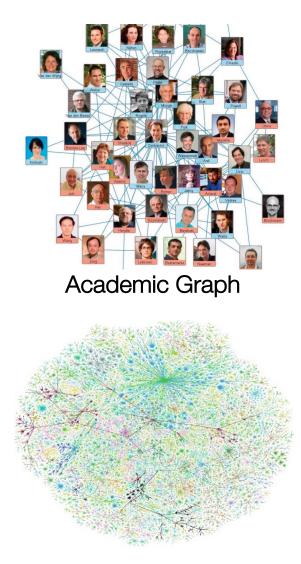


1.Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. **KDD 2020**.

2.Zhenyu Hou et al. GraphMAE: Self-supervised graph autoencoders. KDD 2022.

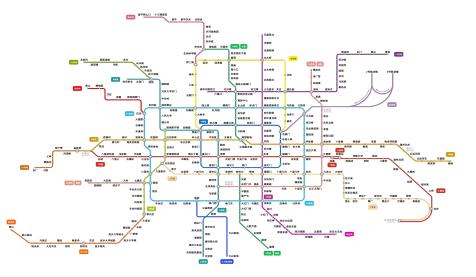
3.Zhenyu Hou et al. GraphMAE2: A Decoding-enhanced Masked Self-supervised Graph Learner. WWW'23.

So Many Graphs



Internet

Knowledge Graph



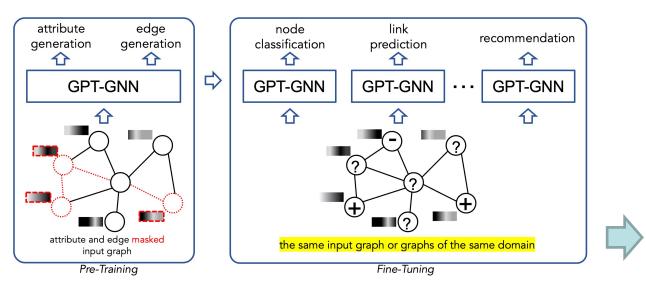
Transportation

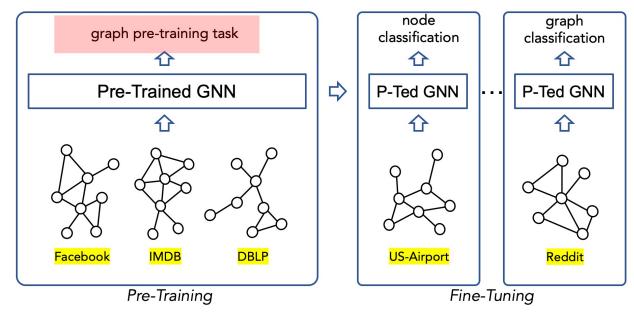
Pover Transformers Transmission Transmission Substration Commercial & INDUSTRAL BUSINESS CONSUMERS Distribution Distribut

Electrical Grid Network

figure credit: Web

GNN Pre-Training

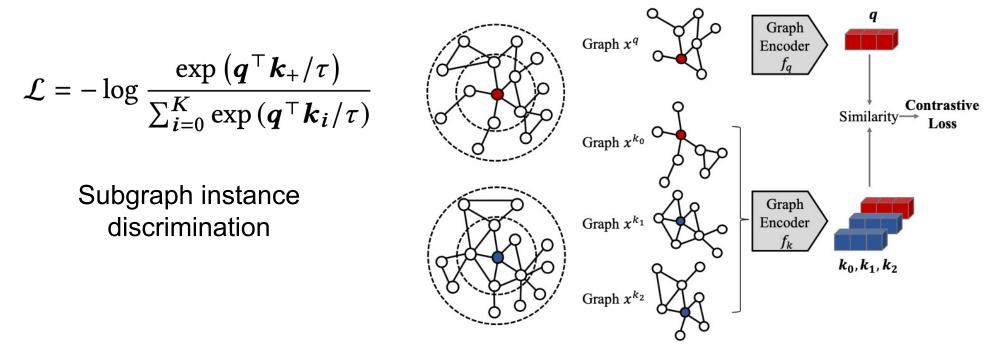




Graph Contrastive Coding (GCC)

Contrastive learning across different graphs

- Q1: How to define instances in graphs?
- Q2: How to define (dis) similar instance pairs in and across graphs?
- Q3: What are the proper graph encoders?



1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. **KDD** 2020. 2.Code & Data for GCC: <u>https://github.com/THUDM/GCC</u>

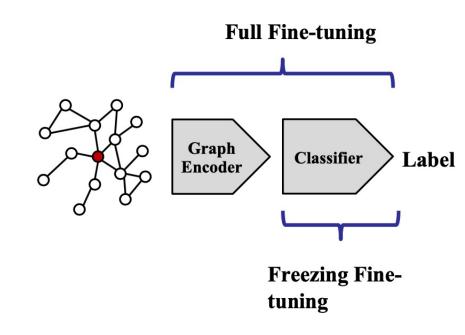
GCC Pre-Training / Fine-Tuning

• Pre-train on six graphs

Dataset	Academia	DBLP (SNAP)	DBLP (NetRep)	IMDB	Facebook	LiveJournal
V	137,969	317,080	540,486	896,305	3,097,165	4,843,953
E	739,384	2,099,732	30,491,458	7,564,894	47,334,788	85,691,368

• Fine-tune on different graphs

- US-Airport & AMiner academic graph
 - Node classification
- COLLAB, RDT-B, RDT-M, & IMDB-B, IMDB-M
 - Graph classification
- AMiner academic graph
 - Similarity search
- The base GNN
 - Graph Isomorphism Network (GIN)



1. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. **KDD** 2020. 2. Code & Data for GCC: <u>https://github.com/THUDM/GCC</u>

Results

0.0521

0.1309

0.1320

0.1470

0.1336

0.1425

0.0221

0.0776

0.0921

0.0947

0.0835

0.0846

Node Classification

	Dat	tasets	6		US-Airj	port	H-in	dex		
	V				1	,190	5,	000		
	E				13	,599	44,	020		
	Pro	NE				62.3	e	9.1		
	Gra	aphW	Vave			60.2	7	0.3		
	Str	uc2ve	ec		(56.2	> 1 I	Day		
	GC	C (E2	2E, fre	eeze)		64.8	7	8.3		
	GC	C (M	oCo,	freeze)		65.6	7	75.2		
	GC	C (ra	nd, fi	ıll)		64.2	7	6.9		
	GC	C (E2	2E, fu	11)	(58.3	8	30.5		
	GC	C (M	MoCo, full)			67.2	8	0.6		
			ç	Simila	arity S	ea	rch			
		K	DD-I	CDM	SIGI	R-CII	KM	SIGM	IOD-I	CDE
V		2,	867	2,607	2,851		3,548	2,61	6	2,559
E		7,	637	4,774	6,354		7,076	8,30	4	6,668
# groud tr	uth			697			874			898
k			20	40	20		40	2	0	40

0.0223

0.0548

0.0782

0.0549

0.0549

0.0652

0.0447

0.0984

0.1185

0.0995

0.1247

0.1178

Random

Panther++

GraphWave

GCC (E2E)

GCC (MoCo)

RolX

0.0198

0.0779

0.0892

0.0846

0.1047

0.0904

0	Tapir	JIa5511	ication		
Datasets	IMDB-B	IMDB-M	COLLAB	RDT-B	RDT-M
# graphs	1,000	1,500	5,000	2,000	5,000
# classes	2	3	3	2	5
Avg. # nodes	19.8	13.0	74.5	429.6	508.5
DGK	67.0	44.6	73.1	78.0	41.3
graph2vec	71.1	50.4	-	75.8	47.9
InfoGraph	73.0	49.7	-	82.5	53.5
GCC (E2E, freeze)	71.7	49.3	74.7	87.5	52.6
GCC (MoCo, freeze)	72.0	49.4	78.9	89.8	53.7
DGCNN	70.0	47.8	73.7	-	_
GIN	75.6	51.5	80.2	89.4	54.5
GCC (rand, full)	75.6	50.9	79.4	87.8	52.1
GCC (E2E, full)	70.8	48.5	79.0	86.4	47.4
GCC (MoCo, full)	73.8	50.3	81.1	87.6	53.0

Graph Classification

1. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020. 2. Code & Data for GCC: https://github.com/THUDM/GCC

0.0566

0.1288

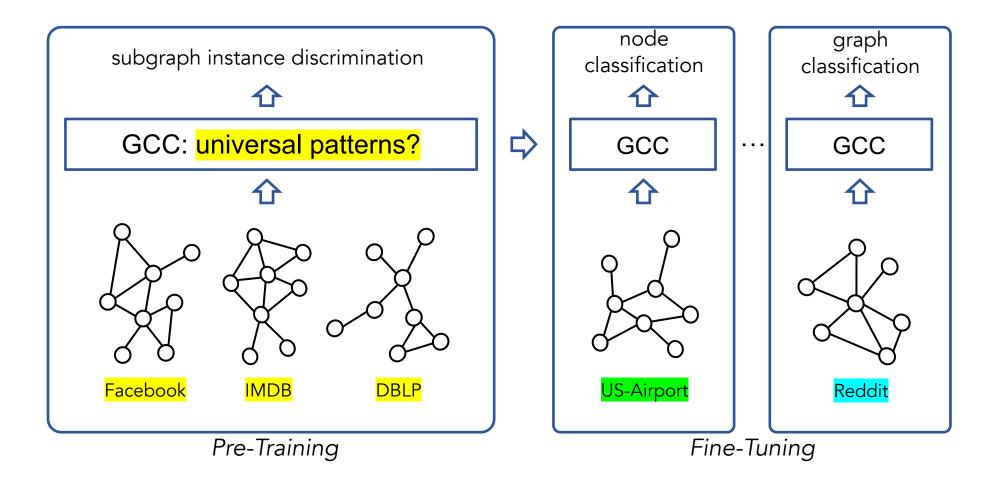
0.1558

0.1693

0.1564

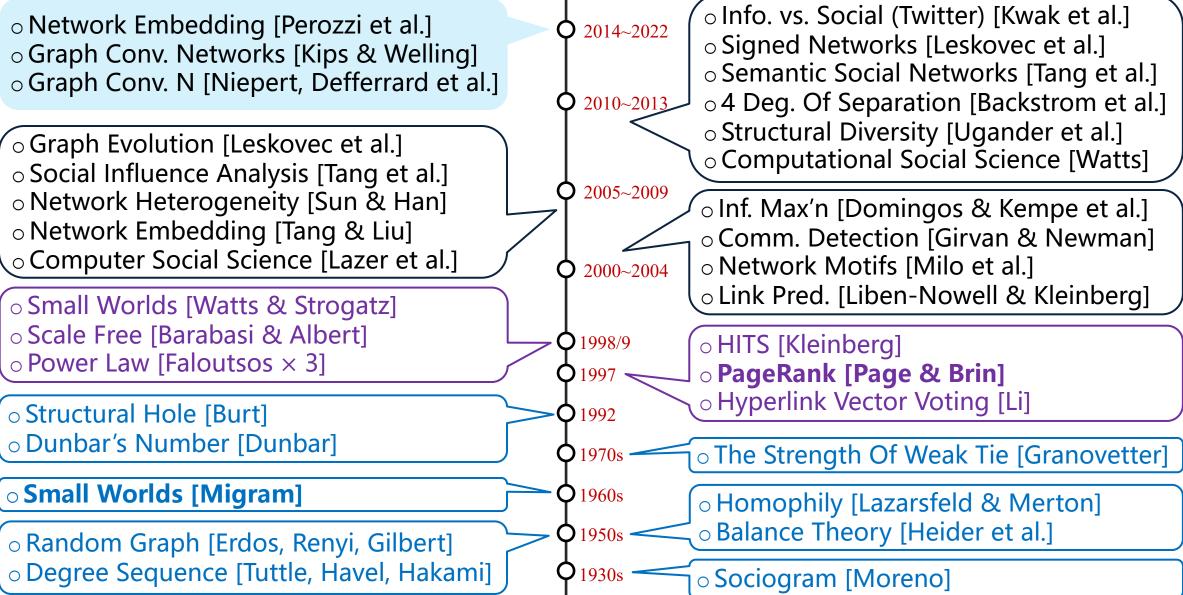
0.1521

Does the Pre-Training of GNNs Learn the **Universal Structural Patterns** across Networks?



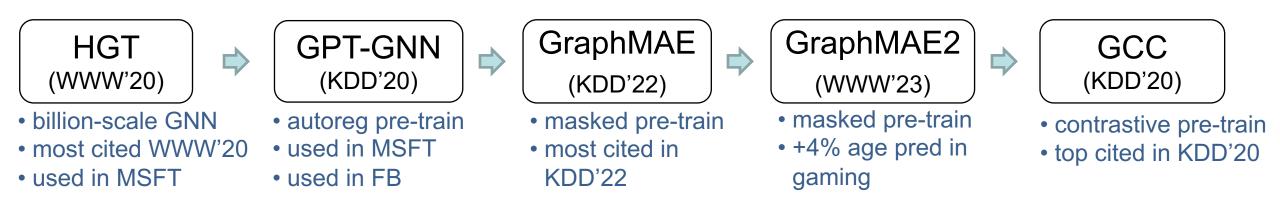
1.Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. **KDD** 2020. 2.Code & Data for GCC: <u>https://github.com/THUDM/GCC</u>

Does the Pre-Training of GNNs Learn the Universal Structural Patterns across Networks?

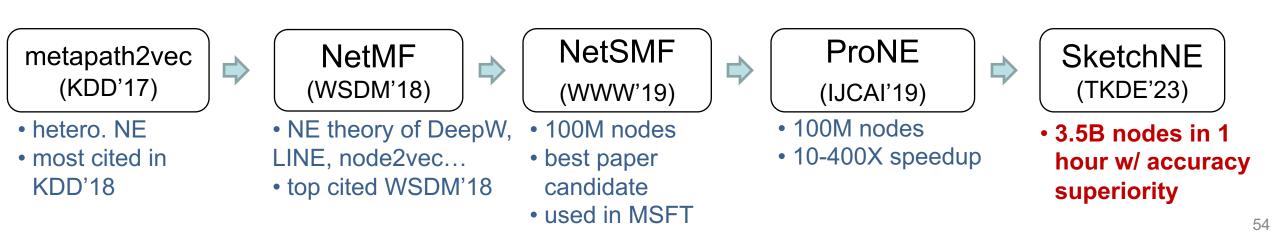


53

Graph Pre-Training



Structural Embedding



Pre-Train Graphs with *Language/Image/Knowledge*

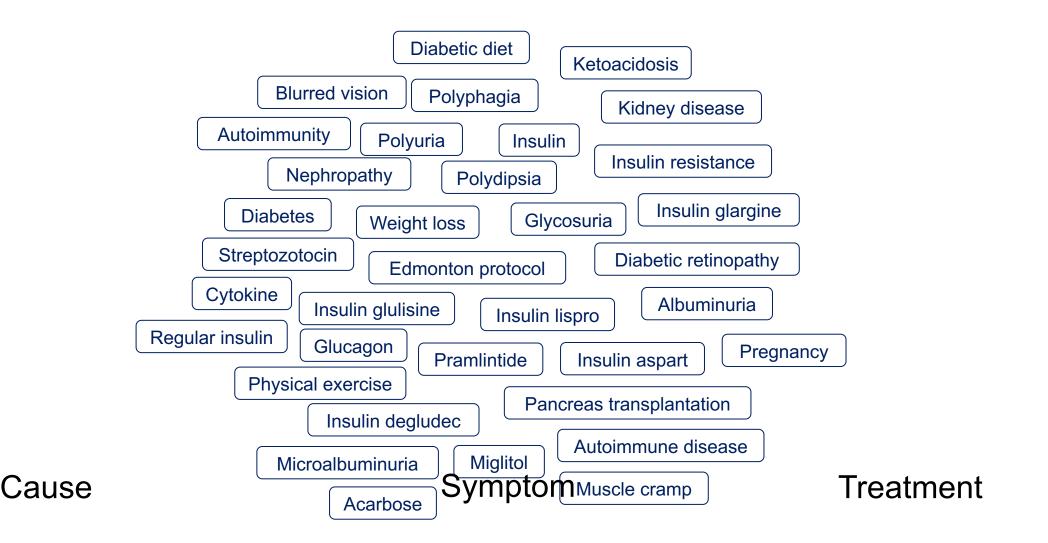
Microsoft/AMiner Academic Graph

Microsoft Office Graph

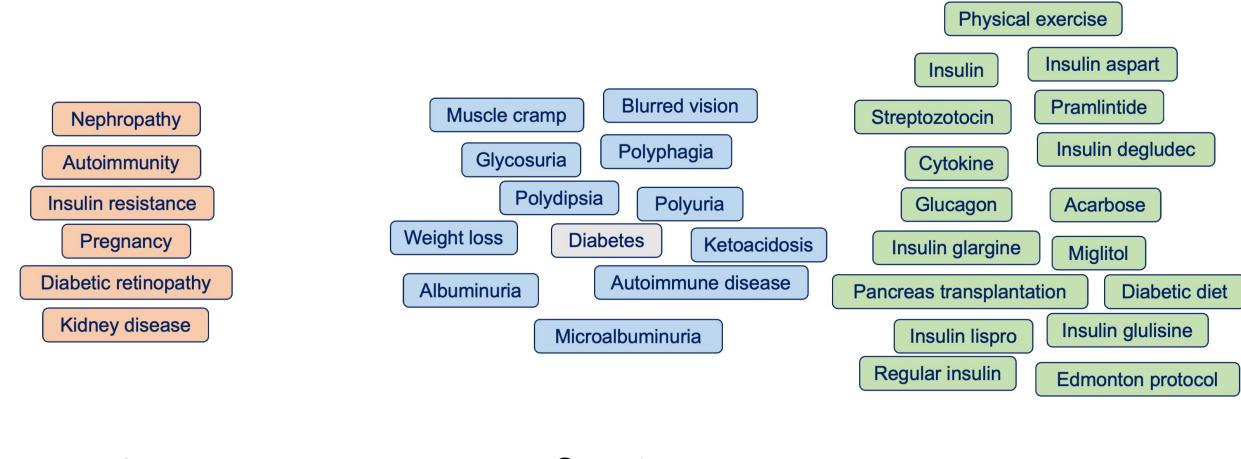
LinkedIn Economic Graph

Facebook Entity Graph

Neural Symbolic Reasoning



Neural Symbolic Reasoning



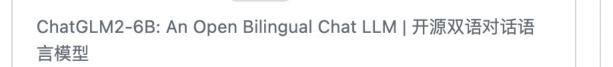
Cause

Symptom

Treatment

Open Research

....



● Python ☆ 9.8k 😵 1.6k

ChatGLM2-6B Public

Н

VisualGLM-6B (Public) ... WebGLM (Public) :: Ц Chinese and English multimodal conversational language WebGLM: An Efficient Web-enhanced Question Answering model | 多模态中英双语对话语言模型 System (KDD 2023) ● Python 🟠 3k 😚 305 ● Python ☆ 1.2k ♀ 113

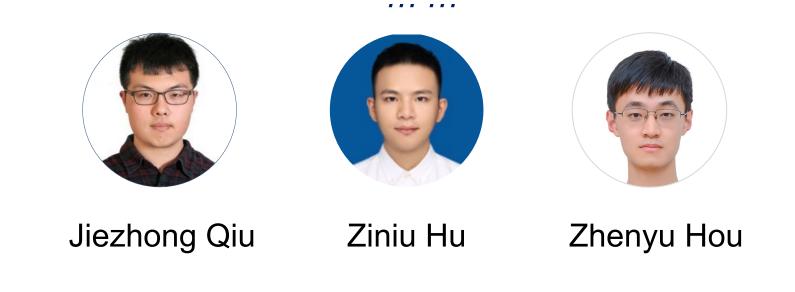
References

- 1. Zhenyu Hou, et al. *GraphMAE: Self-Supervised Masked Graph Autoencoders*. KDD 2022.
- 2. Xiao Liu, et al. Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries. KDD 2022.
- 3. Xiao Liu, et al. SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs. WWW 2022. Best Paper Candidate.
- 4. Wenzheng Feng, et al. GRAND+: Scalable Graph Random Neural Networks. WWW 2022.
- 5. Yukuo Cen, et al. CogDL: A Unified Library for Graph Neural Networks. https://cogdl.ai/.
- 6. Chenhui Zhang, et al. SCR: Training Graph Neural Networks with Consistency Regularization. arXiv.
- 7. Tinglin Huang, et al. MixGCF: An Improved Training Method for Graph Neural Network-based Recommender Systems. KDD 2021.
- 8. Xu Zou, et al. TDGIA: Effective Injection Attacks on Graph Neural Networks. KDD 2021.
- 9. Wenzheng Feng, et al. Graph Random Neural Networks for Semi-Supervised Learning on Graphs. NeurIPS 2020.
- 10. Weihua Hu et al. Open Graph Benchmark: Datasets for Machine Learning on Graphs. NeurIPS 2020.
- 11. Ziniu Hu et al. GPT-GNN: Generative Pre-Training of Graph Neural Networks. KDD 2020. Top cited in KDD'20
- 12. Jiezhong Qiu et al. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training. KDD 2020. Most cited in KDD'20
- 13. Ziniu Hu et al. Heterogeneous Graph Transformer. WWW 2020. Most cited in WWW'20
- 14. Yuxiao Dong et al. Heterogeneous Network Representation Learning. IJCAI 2020.
- 15. Jie Zhang et al. ProNE: Fast and Scalable Network Representation Learning. IJCAI 2019.
- 16. Jiezhong Qiu et al. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. WWW 2019. Best Paper Candidate
- 17. Jiezhong Qiu et al. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. WSDM 2018. 2nd Most cited in WSDM'18
- 18. Yuxiao Dong et al. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. KDD 2017. Most cited in KDD'17

Papers & code & data at https://keg.cs.tsinghua.edu.cn/yuxiao/

Thank You!

Jiezhong Qiu, Ziniu Hu, Zhenyu Hou, Wenzheng Feng, Xiao Liu Yukuo Cen, Weihua Hu, Jie Zhang, Chenhui Zhang, Yuyang Xie Hao Ma, Wenjian Yu, Yizhou Sun, Jure Leskovec, Jie Tang

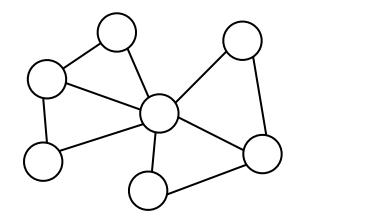


Papers & code & data at https://keg.cs.tsinghua.edu.cn/yuxiao/

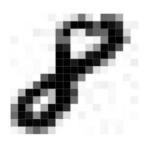
Appendix

How to Encode Graph Structures?

"Graph, a structure made of vertices and edges"

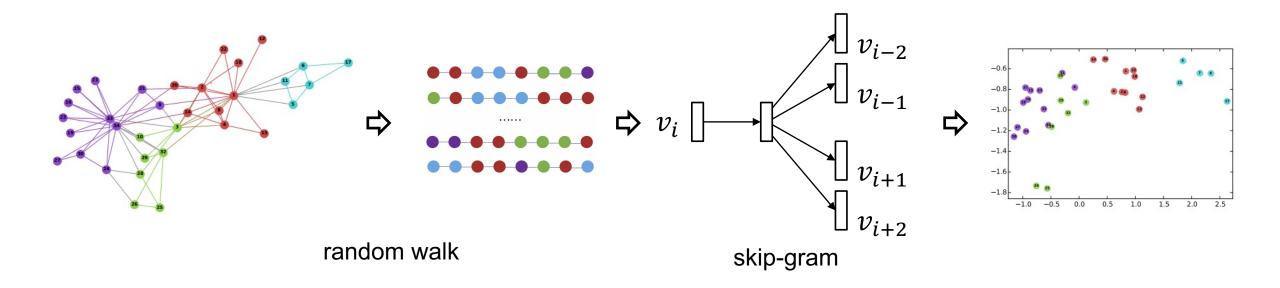


VS.

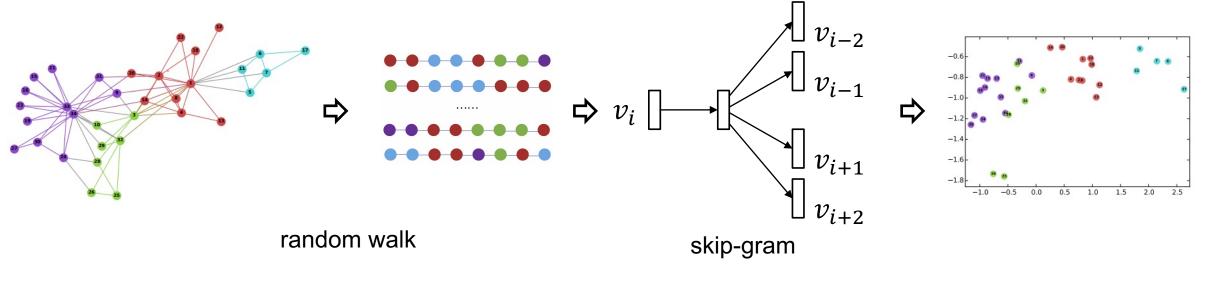


0	3 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	3 0	0	0	1	12	0	11	39	137	37	0	152	147	84	0	0	0
	3 0	1	0	0	0	41	160	250	255	235	162	255	238	206	11	13	0
	3 0	0	16	9	9	150	251	45	21	184	159	154	255	233	40	0	0
1	0 0	0	0	0	0	145	146	3	10	0	11	124	253	255	107	0	0
	0 0	3	0	4	15	236	216	0	0	38	109	247	240	169	0	11	0
	10	2	0	0	0	253	253	23	62	224	241	255	164	0	5	0	0
	60	0	4	0	3	252	250	228	255	255	234	112	28	0	2	17	0
. 1	3 2	1	4	0	21	255	253	251	255	172	31	8	0	1	0	0	0
	0 0	4	0	163	225	251	255	229	120	0	0	0	0	0	11	0	0
	0 0	21	162	255	255	254	255	126	6	0	10	14	6	0	0	9	0
	3 79	242	255	141	66	255	245	189	7	8	0	0	5	0	0	0	0
2	6 221	237	98	0	67	251	255	144	0	8	0	0	7	0	0	11	0
12	5 255	141	0	87	244	255	208	3	0	0	13	0	1	0	1	0	0
14	5 248	228	116	235	255	141	34	0	11	0	1	0	0	0	1	3	0
-8	5 237	253	246	255	210	21	1	0	- 1	0	0	6	2	4	0	0	0
	6 23	112	157	114	32	0	0	0	0	2	0	8	0	7	0	0	0
	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Network Embedding: Random Walk + Skip Gram

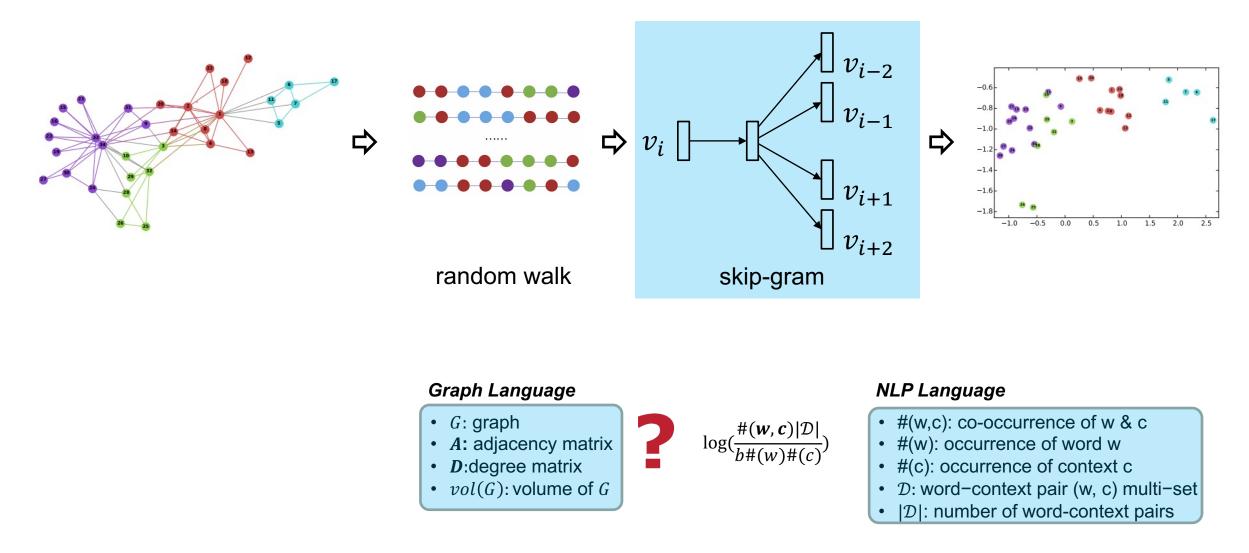


Network Embedding: Random Walk + Skip Gram



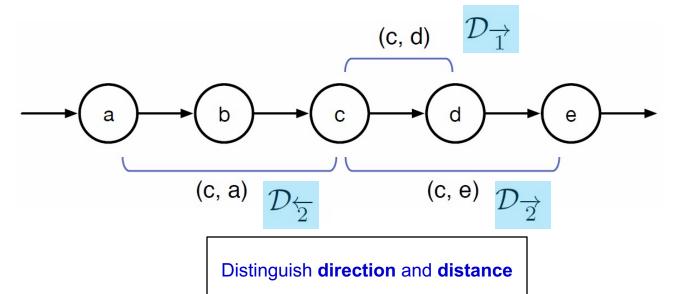
Random Walk Strategies:

- DeepWalk (walk length > 1)
- \circ LINE (walk length = 1)
- \circ PTE (walk length = 1)
- node2vec (biased random walk)
- 1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD' 14. Most Cited Paper in KDD'14.
- 2. Tang et al. LINE: Large scale information network embedding. In WWW'15. Most Cited Paper in WWW'15.
- 3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD'16. 2nd Most Cited Paper in KDD'16.



Levy and Goldberg. Neural word embeddings as implicit matrix factorization. In NIPS 2014

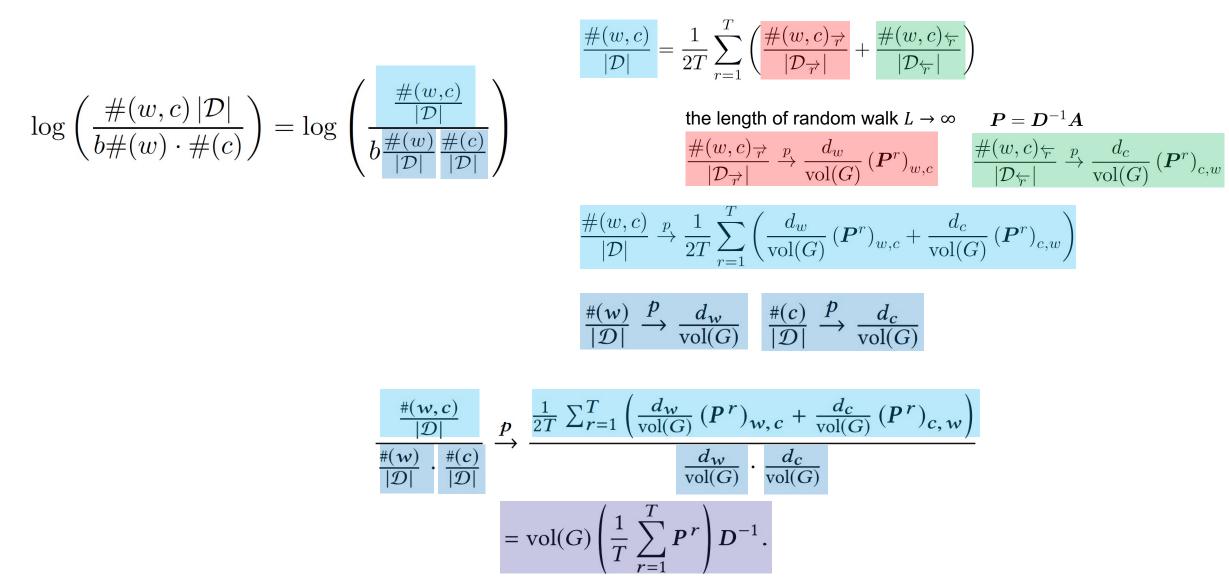
$$\log\left(\frac{\#(w,c)\,|\mathcal{D}|}{b\#(w)\,\cdot\,\#(c)}\right) = \log\left(\frac{\frac{\#(w,c)}{|\mathcal{D}|}}{b\frac{\#(w)\,}{|\mathcal{D}|}\frac{\#(c)}{|\mathcal{D}|}}\right)$$



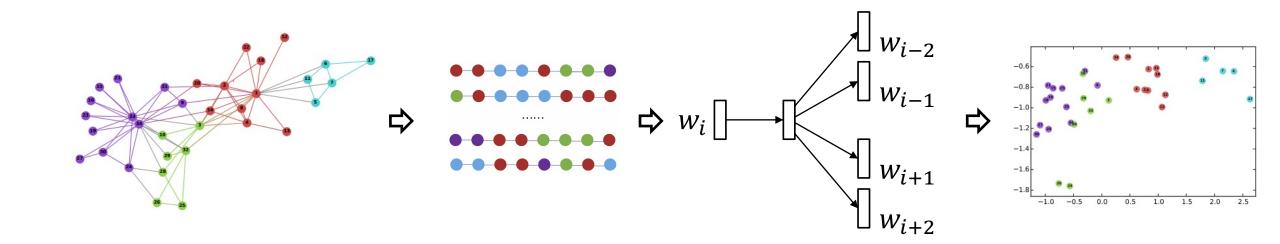
NLP Language

- #(w,c): co-occurrence of w & c
- #(w): occurrence of word w
- #(c): occurrence of context c
- D: word-context pair (w, c) multi-set
- $|\mathcal{D}|$: number of word-context pairs

• Formally, for $r = 1, 2, \dots, T$, we define $\mathcal{D}_{\overrightarrow{r}} = \left\{ (w, c) : (w, c) \in \mathcal{D}, w = w_j^n, c = w_{j+r}^n \right\}$ $\mathcal{D}_{\overleftarrow{r}} = \left\{ (w, c) : (w, c) \in \mathcal{D}, w = w_{j+r}^n, c = w_j^n \right\}$



Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM'18



DeepWalk is asymptotically and implicitly factorizing

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right)$$

Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM'18

A Adjacency matrix
D Degree matrix

$$vol(G) = \sum_{i} \sum_{j} A_{ij}$$

b: #negative samples
T: context window size

Unifying DeepWalk, LINE, PTE, & node2vec as Matrix Factorization

• DeepWalk
$$\log \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} (D^{-1}A)^r \right) D^{-1} \right)$$

• LINE $\log \left(\frac{\operatorname{vol}(G)}{b} D^{-1}AD^{-1} \right)$ $T = 1$
• PTE $\log \left(\begin{bmatrix} \alpha \operatorname{vol}(G_{ww})(D_{row}^{ww})^{-1}A_{ww}(D_{col}^{ww})^{-1} \\ \beta \operatorname{vol}(G_{dw})(D_{row}^{dw})^{-1}A_{dw}(D_{col}^{dw})^{-1} \\ \gamma \operatorname{vol}(G_{lw})(D_{row}^{lw})^{-1}A_{lw}(D_{col}^{lw})^{-1} \end{bmatrix} \right) - \log b$
• node2vec $\log \left(\frac{\frac{1}{2T} \sum_{r=1}^{T} (\sum_{u} X_{w,u} \underline{P}_{c,w,u}^r + \sum_{u} X_{c,u} \underline{P}_{w,c,u}^r)}{b (\sum_{u} X_{w,u}) (\sum_{u} X_{c,u})} \right)$

A Adjacency matrix *D* Degree matrix $vol(G) = \sum_{i} \sum_{j} A_{ij}$ *b*: #negative samples *T*: context window size

- 1. Perozzi et al. DeepWalk: Online learning of social representations. In KDD' 14. Most Cited Paper in KDD'14.
- 2. Tang et al. LINE: Large scale information network embedding. In WWW'15. Most Cited Paper in WWW'15.
- 3. Grover and Leskovec. node2vec: Scalable feature learning for networks. In KDD'16. 2nd Most Cited Paper in KDD'16.

NetMF: **Explicitly** Factorizing the Matrix

DeepWalk is asymptotically and *implicitly* factorizing

$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right)$$

1. Qiu et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM'18

AAdjacency matrixDDegree matrix $vol(G) = \sum_{i} \sum_{j} A_{ij}$ b: #negative samplesT: context window size

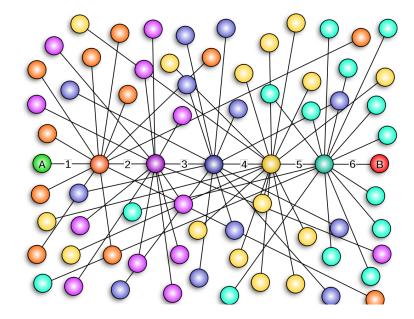
NetMF

- 1. Construction of *S*
- 2. Factorization of *S*

$$\mathbf{S} = \log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\mathbf{D}^{-1}\mathbf{A}\right)^{r}\right)\mathbf{D}^{-1}\right)$$

Qiu, Dong, Ma, Li, Wang, Tang. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In WSDM'18

Challenge?



six (four) degrees of separation

$$\Rightarrow S = \log \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} (D^{-1}A)^r \right) D^{-1} \right)$$

$$n^2 \text{ non-zeros}$$

$$Dense!!$$

$$Time \text{ complexity}$$

$$O(n^3)$$

How to Solve it?

NetMF

- 1. Construction of *S*
- 2. Factorization of *S*

NetSMF—Sparse

- 1. **Sparse** Construction of *S*
- 2. Sparse Factorization of *S*

$$\boldsymbol{S} = \log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right)$$

Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019.

Sparsify S

For random-walk matrix polynomial $\boldsymbol{L} = \boldsymbol{D} - \sum_{r=1}^{T} \alpha_r \boldsymbol{D} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^r$ where $\sum_{r=1}^{T} \alpha_r = 1$ and α_r non-negative One can construct a $(1 + \epsilon)$ -spectral sparsifier \tilde{L} with $O(n \log n \epsilon^{-2})$ non-zeros in time $O(T^2 m \epsilon^{-2} \log n)$ for undirected graphs $\boldsymbol{S} = \log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^{r} \right) \boldsymbol{D}^{-1} \right)$ $\alpha_1 = \dots = \alpha_T = \frac{1}{T} \qquad \Rightarrow \qquad = \log^\circ \left(\frac{\operatorname{vol}(G)}{b} D^{-1} (D - L) D^{-1} \right)$ $\approx \log^{\circ} \left(\frac{\operatorname{vol}(G)}{h} D^{-1} (D - \widetilde{L}) D^{-1} \right)$

1. Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification of random-walk matrix polynomials. arXiv:1502.03496. 2015.

An Bounded Approximation Error

$$\log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \left(\frac{1}{T} \sum_{r=1}^{T} \left(\boldsymbol{D}^{-1} \boldsymbol{A} \right)^{r} \right) \boldsymbol{D}^{-1} \right)$$
$$= \log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1} (\boldsymbol{D} - \boldsymbol{L}) \boldsymbol{D}^{-1} \right) \longrightarrow \boldsymbol{M}$$
$$\approx \log^{\circ} \left(\frac{\operatorname{vol}(G)}{b} \boldsymbol{D}^{-1} (\boldsymbol{D} - \boldsymbol{\tilde{L}}) \boldsymbol{D}^{-1} \right) \longrightarrow \boldsymbol{\tilde{M}}$$

Theorem The singular value of $\widetilde{M} - M$ satisfies

$$\sigma_i(\widetilde{\boldsymbol{M}} - \boldsymbol{M}) \le \frac{4\epsilon}{\sqrt{d_i d_{\min}}}, \forall i \in [n].$$

Theorem

Let $\|\cdot\|_F$ be the matrix Frobenius norm. Then

$$\left\|\operatorname{trunc_log}^{\circ}\left(\frac{\operatorname{vol}(G)}{b}\widetilde{M}\right) - \operatorname{trunc_log}^{\circ}\left(\frac{\operatorname{vol}(G)}{b}M\right)\right\|_{F} \leq \frac{4\epsilon \operatorname{vol}(G)}{b\sqrt{d_{\min}}} \sqrt{\sum_{i=1}^{n} \frac{1}{d_{i}}}$$

NetSMF

• Construct a random walk matrix polynomial sparsifier, \widetilde{L}

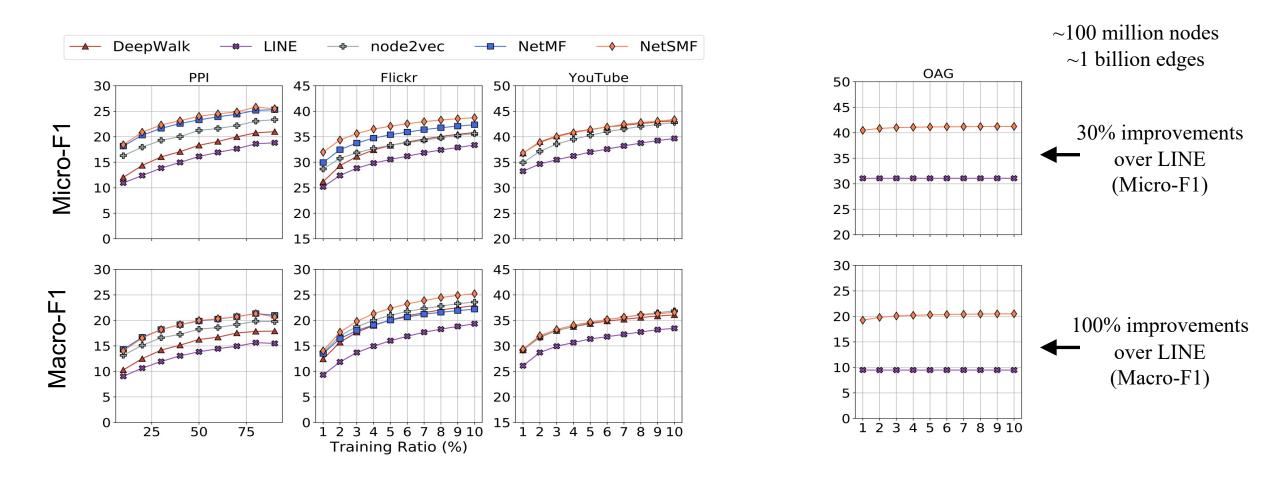
Construct a NetMF matrix sparsifier.

trunc_log°
$$\left(\frac{\operatorname{vol}(G)}{b}\boldsymbol{D}^{-1}(\boldsymbol{D}-\widetilde{\boldsymbol{L}})\boldsymbol{D}^{-1}\right)$$

Factorize the constructed matrix

Qiu, Dong, Ma, Li, Wang, Wang, Tang. NetSMF: Network embedding as sparse matrix factorization. In WWW 2019.

Results

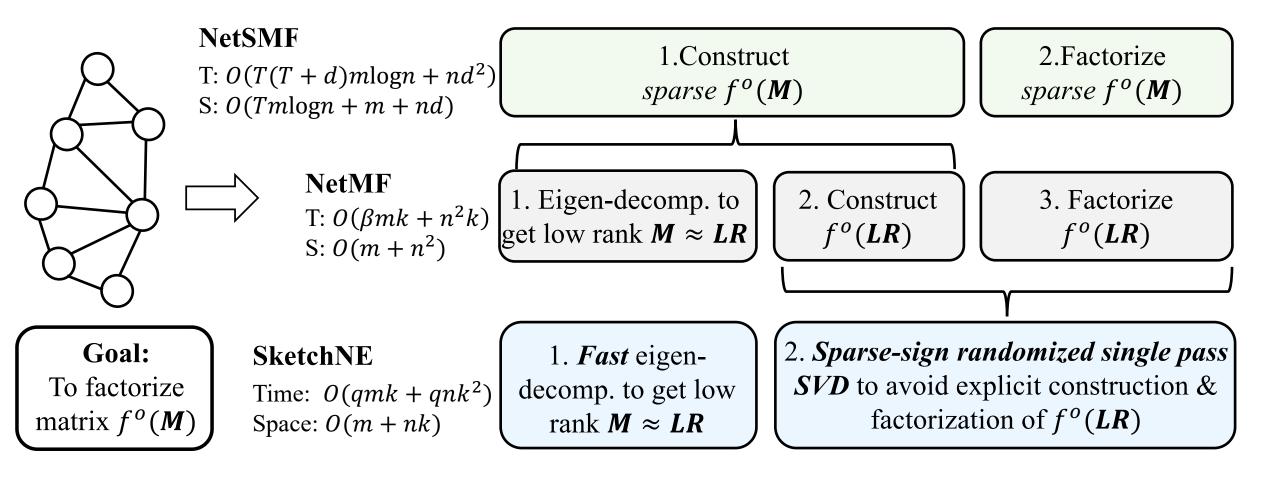


- Effectiveness: NetMF (explicit MF) ≈ NetSMF (sparse MF) > DeepWalk/LINE (implicit MF)
- Scalability: NetSMF can handle billion-scale network embedding

Yuyang Xie Tsinghua

SketchNE: Embedding 3.5B nodes (225B edges) in 1 hour

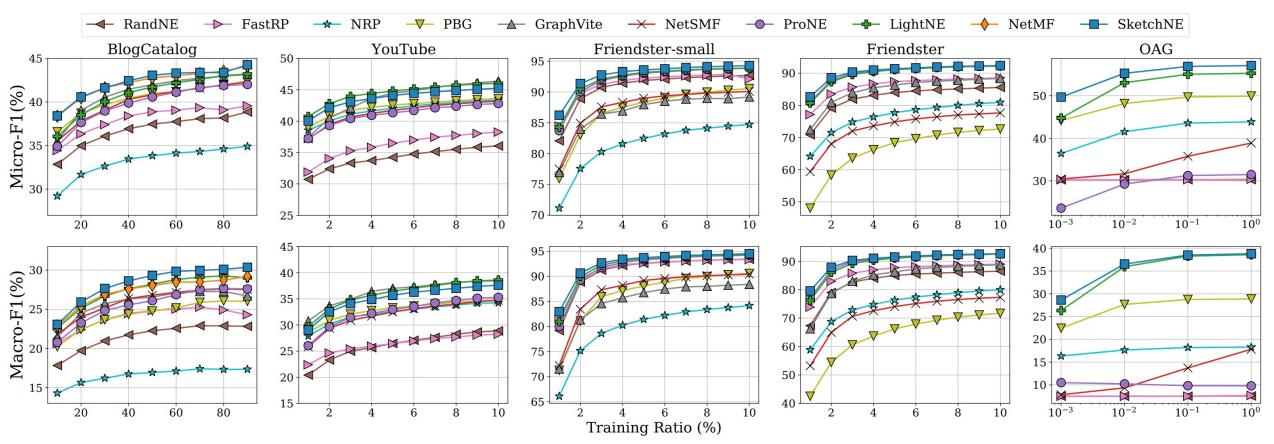
$$\log\left(\frac{\operatorname{vol}(G)}{b}\left(\frac{1}{T}\sum_{r=1}^{T}\left(\boldsymbol{D}^{-1}\boldsymbol{A}\right)^{r}\right)\boldsymbol{D}^{-1}\right) \qquad \boldsymbol{L} = \frac{\operatorname{vol}(G)}{bT}\boldsymbol{D}^{-1/2}\boldsymbol{U}_{k}, \ \boldsymbol{R} = (\sum_{r=1}^{T}\boldsymbol{\Lambda}_{k}^{r})\boldsymbol{U}_{k}^{\top}\boldsymbol{D}^{-1/2}$$



Yuyang Xie et al., SketchNE: Embedding Billion-Scale Networks Accurately in One Hour.

Node Classification

	Multi-label Vertex Classification Task										
	BlogCatalog	YouTube	Friendster-small	Friendster	OAG						
$ V \\ E $	10,312 333,983	1,138,499 2,990,443	7,944,949 447,219,610	65,608,376 1,806,067,142	67,768,244 895,368,962						



Yuyang Xie et al., SketchNE: Embedding Billion-Scale Networks Accurately in One Hour.

Link Prediction

	Li	nk Predic	tion Task		-
Livejourn	al Clue	Web H	yperlink2014	Hyperlink2012	
4,847,57 68,993,77	10 00 00 00000 000000 000000 0000000000		1,724,573,718 24,141,874,032	3,563,602,789 225,840,663,232	
Datasets	Systems	MR↓	HITS@10↑	HITS@50↑	AUC ↑
Livejournal	PBG GraphVite NetSMF RandNE FastRP NRP ProNE LightNE	4.25 3.06 3.09 5.19 4.51 2.98 3.31 2.13	0.929 0.962 0.954 0.912 0.928 0.949 0.950 0.977	0.974 0.982 0.986 0.966 0.973 0.993 0.982 0.993	0.968 0.973 0.935 0.957 0.965 0.934 0.932 0.945
	SketchNE	2.10	0.977 0.753	0.994 0.803	0.945
ClueWeb	SketchNE	33.3	0.774	0.803	0.903 0.971
Hyperlink2014	LightNE SketchNE	129.7 110.3	0.5 0.593	0.628 0.693	0.874 0.890
Hyperlink2012	LightNE SketchNE	257.7 71.4	0.189 0.715	0.348 0.798	0.751 0.927

Yuyang Xie et al., SketchNE: Embedding Billion-Scale Networks Accurately in One Hour.

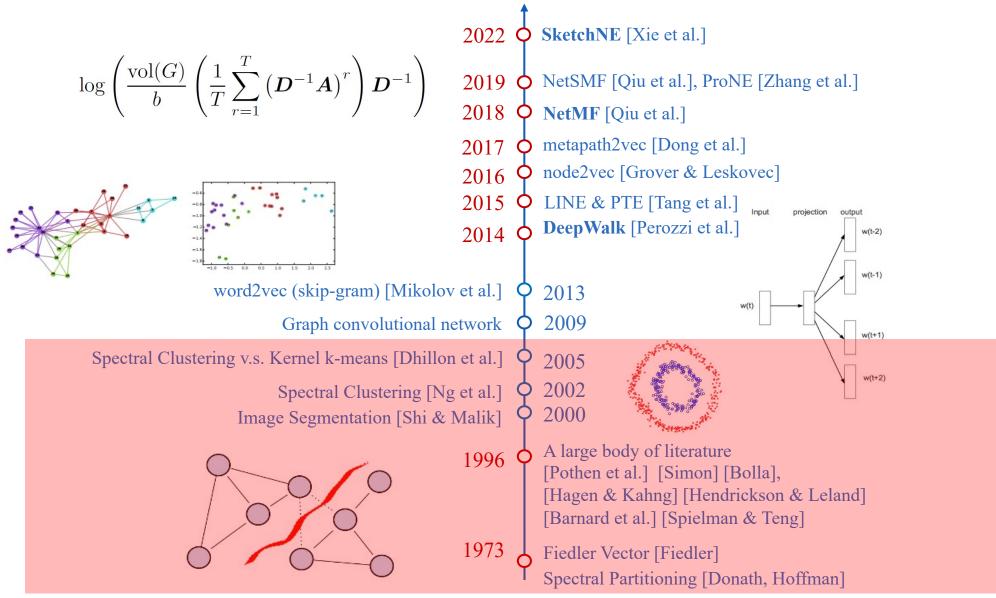
Metric	Datasets	RandNE	FastRP	NRP	PBG	GraphVite	NetSMF	ProNE	LightNE	SketchNE
	BlogCatalog	0.5 s	1.0 s	3.0 s	174.0 s	4.0 s	11.3 m	79.0 s	152.0 s	2.0 s
Time	YouTube	12.0 s	17.0 s	173.0 s	12.5 m	44.0 s	3.7 h	65.0 s	96.0 s	40.0 s
	Friendster-small	11.8 m	40.0 m	3.5 h	22.7 m	2.8 h	52 m	5.3 m	7.5 m	5.2 m
	Friendster	57.8 m	3.5 h	16.1 h	5.3 h	20.3 h	16.5 h	19.5 m	37.6 m	16.0 m
	OAG	33.7 m	3.5 h	11.4 h	20 h	1+day	22.4 h	22.6 m	1.5 h	1.1 h
	Livejournal	9.0 m	18.0 m	4.3 h	7.3 h	29.0 m	2.1 h	12.8 m	16.0 m	12.5 m
	ClueWeb	×	×	×	1+day	1+day	×	×	1.3 h	37.7 m
	Hyperlink2014	×	×	×	1+day	1+day	×	×	1.8 h ¹	1.0 h
	Hyperlink2012	×	×	×	1+day	1+day	×	×	5.6 h ¹	1.2 h
	BlogCatalog	0.2	0.3	0.6	*	*	135	18	273	17
	YouTube	6.9	12.5	9.7	*	*	854	28	83	27
	Friendster-small	125	125	105	*	*	85	84	541	56
Mem	Friendster	548	583	400	*	*	1144	326	559	236
(GB)	OAG	429	746	473	*	*	1500	403	1391	283
	Livejournal	224	417	282	*	*	140	131	532	147
	ClueWeb	×	×	×	*	*	×	×	1493	612
	Hyperlink2014	×	×	×	*	*	×	×	1500^{1}	1076
	Hyperlink2012	×	×	×	*	*	×	×	1500^{1}	1321

¹ LightNE requires sufficient samples that cost more than 1500GB mem (and more time), so it has to stop before it reaches the mem limit.
 "★" indicates that we do not compare the memory cost of the CPU-GPU hybrid system (GraphVite) or distributed memory system (PBG).

"×" indicates that the corresponding algorithm is unable to handle the computation due to excessive space and memory consumption.

Yuyang Xie et al., SketchNE: Embedding Billion-Scale Networks Accurately in One Hour.

A Brief History of Network/Graph Embedding



Images are extracted from related academic publications

Graph Representation Learning & Pre-Training

SketchNE

- handle 100M nodes
- 10-400X speedup

NetSMF

- handle 100M nodesbest candidate in WWW'19
- used in MSFT

NetMF

theoretical understanding of NE

2nd most cited in WSDM'18

small

large

simple

3 5 2

1 6 2

1 3 3

⇔

5 1 2

3 2 2

845

Paper & code & data at https://keg.cs.tsinghua.edu.cn/yuxiao/

complex